
-_. -=;v-

Development system facilitates
programming of signal .. processor chip

To program the 2920 signal-processor chip for a
specif ic function, Intel's Signal Processo r Develop­

ment System (ELECTRONIC DESIGN, Sept. I, 1979, p.
27) contains the hardware and software that takes a
design from concept to implementation. The system
completes an entire design-including testing and
debugging-before the 2920 chip is plugged in . Unlike
analog design procedures, the system lets the des igner:

• Develop circuits faster by eliminating time 5pent
in aequiring parts, in laying out and constructing
boards and even in debugging, si nce the computer
helps find the bugs.

• Eliminate bugs by editing and reassembling th e
program, not relaying out the breadboard.

• Add circuits by adding instructions to the pco­
gram rather than rebuilding the breadboard.

• Document the design in detail at each step,
because ali the designing, tesling and debugging is
done with software.

The 2920 development system is a standard,lntellec
Series lI, ModeI220/ 230 Microcomputer Development
System (MDS). The MDS-220/ 230 uses an SP20 signal
processing support package, comprising a 2920 as­
sembler, a 2920 simulator and a 2920 EPROM pro­
gramming personality cardo

Both software and hardware versions of the sim­
ulator are available. The hardware version performs
f1oating-point math rou tines in hardware via the
iSBC-310 high-speed math unit; the software version
handles its own f1oating-point math routines.

Sinee programs run on the 2920 are stored in 192
words of 24-bit-wide EPROM, software is easily mod­
ified, which facilitates real-time testing of prototypes.
For program modifications, the previous program is
erased from the EPROM; the EPROM programming
personality card loads the new one onto the same chip.

The 2920 assembler translates symbolic assembly­
language programs into machine-readable code. lt
aecepta the designer's source file and generates a
listing file and an object code fil e. The former Iists
the source code with corresponding machine code and
memory locations. lt also includes comments and
titles (if any), error and warning diagnostics, the
number of RAM and ROM locations used, and a table

Charlel Vager, Applications Engineer. Telecommunica·
tions Product Marketing. Inlel Corp .. 3065 Bowers Ave ..
Sanla Clara. CA 95051.

106

of user-defined symbols.
Fig. 1 displays a sample 2920 asse mbly li sting. The

object-code fil e contains the machine-readable code
used to program the 2929 for real-time testing or used
to load the 2920 simulator for debugging.

The 2920 assembler co ntains controls and directives
that permit the des igneI'. to modify the output files
by changing the page length or width or both; by
includ ing a title wh ich will appear on each page; by
suppressing the symbol table; and by ejecting to the
top of next page. Since ali instructions are assembled
at one t ime (batch assembly), controls and directives
to the assembl er must appear either in the command
that invokes the assembler or in the sou rce code being
translated. lf no controls are specified, the assembler
defaults to its own set of controls.

Error and warning diagnostics indicate when a
mistake is made- not on ly a software mistake, but
also a software-related hardware mistake. For exam­
pie, tim ing is crucial when the 2920's Digital-to­
Analog Register (DAR) is loaded with a digital value
that must be converted to analog. The program must
delay the output instruction sufficiently to accom­
modate the fin ite risetime of the amplifier in the 2920's
d/ a converter. lf the delay given is insufficient, lhe
assembler issues a warning.

The 2920 assembler is a one-pass designo Since the
2920 maintains a constant sample rate and since the
rate depends on the number of instructions executed,
no jumps are a llowed except at the end of a program
when the program counler is rese!. Therefore, the
assembler need not devote a separate pass to de­
termine the add ress of the labels wh ich would typi­
ca lly be found in jump instructions.

The assem bler passes through the code once, using
two location counters: one for the instructions and
labels, and another fo r the user symbols representing
the RAM locations. Even though the 2920 prohibits
jumps, the assem bler does allow labels for sy mbolic
debuggi ng in the simulator.

The assembler recognizes two types of symbols:
reserved and user-d efined. Reserved symbols are
mnemonic 2920 instructions, add ressable constants,
assembler controls and assembler directives. User
symbols are locations of RAM data and of labeled
instructions. .

When the aS5embler first encounters a user symbol,
it assigns the value of the appropriate location counter

EU:CTMON IC DI'SION 25. Dcccmher fi I Q1Q

I

t

~
s
t
d

a
p
il
p
P

S
2
i ~

ti
e:
d
ti
d
o·
o.
ri
b,

1

S

C
S
S
b

A
E
VI
R
R

1.
29
29
1·1

1
q

i
~
r

t
.-
) -

e
lt
1-

's

le
.1e
d.
m
he
e­
~ i-

I .~

ng
its
Iic

.Is:
, re
!ta.
ser
led

Jo1,
ter

979 • ~

to the symbol and lhen increments the counter. The
assembler allows the ' designeI' to use the EQU
statement to make two symbols equivalent. This use
ofEQU can be advantageous when aRAM value is used
as a temporary memory location and has a different
meaning in different program segments.

The assembler recognizes a control word called
DEBUG, which generates additional object code con­
taining the user-defined symbols. The EPROM pro­
grammer ignores this additional object code but the
simulator recognizes it. Once the code is loaded into
lhe simulator, a program can be debugged using the
designer's symbols in the assembly Iisting.

The 2920 simulator (SM2920) simulates the llrogram
as it executes in the processor. Using the simulated
program, the designeI' has access to t he registers,
inputs and outputs . e1ock, memor)' locations and other
poin ts of interest in lhe processo r, to analyze the
performance and problems of the program (Fig. 2).

Although it simulates th e functions of the 2920, the
SM2920 executes much m"re slowly than the 2920. The
2920 is a real-time signal processo r, but the simulator
is a logical-time signal processor.

Without the simulator, many points of interest in
lhe 2920 would be inaccessible during debugging. For
example, three pins on the 2920 are used for hardware
debugging: End of Program (EOP), Overflow (OF) and
the instruction cyc\e (ccr:K). With these pins, a
designeI' can tell the instructian at which a register
overflows, an output occurs 01' the end-of-program
QCCurs. HOlVever, typica l bugs-fol'getting to e1ear a
register 01' inadverte ntly clearing a register-would
be in visible to the useI' lVithout the s imulator. Also,

ISls-iI 2920 ASSEMBLER XI02

ASSEMBLER INVOKED BY: AS2920 SRG

SWEEP RA TE GENERATOR

UNE LOC OBJECT SOURCE STATEMENT

it would be impossible with the pins a lone to examine 1I

rcg isters and RAM locations at any point in time.
The simulator operates in two modes: interrogation I

a nd simulation. The interrogation mode occurs when-
ever the SM2920 is waiting for a command and not I1

s imulating the program execution. It can be used to
prepare the system for a new operation 01' to in-
vestigate the results of the last operation. I

In the second mode, the 2920 program residing in
memory is simulated and trace data are collected and
displayed. Simulation can start from time equals zero II

and program coun ter equals zero; 01' from the point
at which the last slmulation ended; 01' from some user­
specified ini t ial time and counter conditions. During
program execu tion, a break in simulation may be
specified according to the conditions of simulation.
When a breakpoint is encountered, the SM2920 module
reverts to the interrogation mode.

Any simulation with the SM2920 follo ws much the
same seq uence of steps illustrated in Fig. 3. On
en ter ing the interrogation mode for the first time, the
useI' prepares the system for simulation by setting
the sample rate, defining symbols, setting simulation
breakpoints and t race qualifiers, and specifying what
items are to be t raced. Thereafter, using the input
faci lity, the designeI' specifies the input signals to be
simulated as functions of time 0 1' other variables.
Once simulation begins, the trace data are displayed I
as they are collected. I

When simulation halts (entering the interrogation ,
mode), the designe!' can redisplay the trace' data into I

a trace burrer . SM2920 co mmands position the trace
buffer pointer to the desired information and display

1 $DEBUG TlTLE ('SWEEP RATE GENERATOR')
2
3
4 O
5 I
6 2
7 3
8 4
9 5

lO

SYMBOL:

CONSTANT
SI
SRG
HI

488AEF
408A8C
40008F
4000F8
404CEF
788200

ASSEMBLY COMPLETE
ERRORS s O
WARNINGS ~ O
RAMSIZE = 2
ROMSIZE '.= 6

CONSTANT: LDA
ADD
LDA

SRG: SUB
LDA
ADD

VALUE:

O
O
3
I

SI,
SI.
SI.
HI.
DAR.
HI.

1. In Ih mbly-I.ngu.g. sourc. cod. for Ih.
2920, Ih. Ilx Ilalem.nls Ihown conflgur. Ih.
2920 a •••• wtoolh wav.form gen.ralor wllh a
!.Hz lw •• p rale. To ald lhe de,lgner, Ih. code

ELECTIW:-'I(1)1,1(,1'0 ~~. D C":clllhc r 6. 1979

KP5. ROO :DEVELOP A CONSTANT
KPI. R05 :FOR A 1Hz SWEEP RATE
SI. RI3
SI. ROO :BEGIN THE SAWTOOTH
HI. ROO :WAVEFORM GENERATOR
KP4. LO I. CNDS :IF HI IS < O RESET

:TO O~E

Include, a 11,1 of symbolsalongwllh Ihelr
absolute locatlons and the number of errors and
of warnlng' found by lhe a.sembler durlng lI,
Iran,lallon of Ih. programo

107

108

A demonstration of the 2920 simulator
Simulation of a sweep-rate generator (SRG) pro­

gram demonstrates some of the testing capabilities
of the 29aJ developmcnt systems. The sweep-rate
generator, a sawtooth wave oscillator, is one of the
functional blocks in the 2920 spectrum analyzer
(ELECTRONlC DESIGN, Nov. 8, 1979, p. 70) . .

In the spectrum analyzer, the SRG provides lhe
horizontal sweep output for an oscilloscope, and
creates an input to a voltage conlrolled oscillator. The
oscillator produces a linear frcquency sweep as a
funclion of time.

To demonstrate the simplicity in changing oscillator
f""luency, the program listing has been modified
olightly: The period of the SRG has been changed from
1 s (a length that could generate too many traces) to
488l's (which corresponds to aJ48 Hz). The right shift
in instruction 2 of the SRG program is changed to
R02. This multiples the original L'Onstant by 2", which
in turn multiples the frequency by 2" or 2048. With
this change, the designer tests the program as follows:

·SM2920
° lOAO SRG.HEX ;

°ROM O TO 5
ROM 000 - lOA .SI ,KP5,ROO,NOP
ROM 001 - ADO .SI,KP1,R05,NOP
ROM 002 - lDA .SI,.Sl,R13,NOP
ROM 003 - SUB .H1,.Sl,ROO,NOP
ROM 004 - lDA OAR,.H1,ROO,NOP
ROM 005 - ADO .H1,KP4,lOI,CNDS

°SYMBOl
.51- 0.00000000
.H1 - 1.00000000
.CONSTANT- 0.00000000
.SRG- 3.oooooo0E+0

This command loads the object code and the symbol
table. The symbol table and the object code are
dumped to verify that they have been loaded correctly.

The following code modiíies the program in the
simulator so that the frequency is 2048 Hz instead
of 1 Hz; it also adds an End of Program (&OI')
command.

°ROM 2-l0A .Sl,.Sl,R2
°ROM O TO 5
ROM 000 - lOA .Sl,KP5,Roo,NOP
ROM 001 - ADO .Sl,KP1,R05,NOP
ROM 002 - lOA .S1r S1,R02,NOP
ROM 003 - SUB ,H1,.Sl,ROO

Ô
NOP

ROM 004 - lOA OAR,.H1,RO ,NOP
ROM 005 - AOO .Hl,KP4,lOI ,CN05
°ROM 188 - EOP

The next command, TPROG sets the .ample period.
The period set here corre.pond. to a sampling frcquen­
ey of 13,020 Hz. Thi. frcquency equals lhe 2920 clock
f""luency of 10 MHz plus a full program of 192
instructions.

"'PROG - 1/13020
The TRACEcommand specifies the item. to be traced.

for the first part of the SRG test, the TRACE allow.
the designer to determine ir the constant generated
in the program is lhe one desired. The program
cou nter and the RAM location containingthe constant
are traced.

"'RACE~PC,RAM .51
Next, the QUALIFlER parameter indicates the condi­

tions to be met to collect a trace. ALWAYS means
ucoUect a trace every program instruction.1l ,!'he SlZE
command gives the number of simulated instructions.

OQUALlFIER
QUAl lflER - AlWAYS
°SIZE~192

The simulation to test the constant begins. Because
the constant is completely generated after the first
three instructions, a BREAKPOlNT is set to stop sim­
ulation at that point.

°BREAKPOINT=COUNT=3
°SIMULATE F.ROM O

PC RAM O
SIMULATION BEGUN
1.00000000 0.62500000
2.ooooooOE+0 0.62890625
3.ooo0000E+0 0.15722656

SIMUlATION TERMINATEO
°EVALUATE RAM .51

0.0010IooooI0ooooo00000000B
0.157226560

0.284oooH

The simulator has veriíied that the 2920-generated
constant is correct. The next test determines the
períod, frequency and waveshape of the sawtooth
wave oscillator. TRACE is changed so t!tat the time,
DAR and the oscillator's RAM location can be ob­
served. QUALlFlER ia changed so that a trace ia gener­
ated once per program passo A BREAKPOlNT is set to
stop the simu1ation after two cycles of the wave are
traced. Also the oscillator's RAM location ,is initialized
to one. The simulatio.n bcgin. at time equals zero,
when the program counter cquals zero.

.,.RACE
TRACE ~ PC,RAM O
0TRACE- T,DAR,RAM .Hl
0Q
QUAllFlER ~ AlWAYS
"Q=PC=O
oRAM .H1=ONE
°0
OREAKPOINT - COUNT-3
°B-T>.OOI

0SIMULATE FROM O
T DAR

SIMULATlON BEGUN
0.00007680 0.83984375
0.00015361 0.68359375
0.00023041 0.52734375
0.00030722 0.36718750
0.00038402 0.21093750
0.00046083 0.05468750
0.00053763 -0.10156250
0.00061444 0.73828125
0.00069124 0.58203125
0.00076805 0.42578125
0.00084485 0.26953125
0.00092166 0.10937500
0.00099B46 -0.046B7500

SIMULATION TERMINATEO

RAM 1

0.84277334
0.58554683
0.52832026
0.37109370
0.21386714
0.05664056
0.89941396
0.74218745
0.58496089
0.42773433
0.27050776
0.11328119
0.95605459

Using linear interpolation, the frequency is de­
termined from the time to be 2048 Hz, as expected.
Judging from RAM location 1, the waveform is a
88wtooth. The results of the complete simulation test
sbow that thesawtooth oscillator is working correctly.

1:1 H 111.0:-'11' DI;SUjN 25. I>CCl!rnhcr 6. 197

'1-
,o
1E
8.

,. '
:r~

, to
re
ed
'0,

3e­
ed.
\ a
est
.ly.

" 6. 1979

ooe, several or ali ~he entries in the buffer.
Also, the designer can examine and change 2920

memory locations or registers, lIO ports or 8M2920
psuedo-registers, to acquire valuable information on
program operation at termination. Altering data or
register values reveals th eir affect on the next sim­
ulation; changes can be patched into the program code
itself. The designer can display and change symbolic
values in the symbol table and set breakpoint and trace
qualifier conditions.

By alternating between interrogation and sim­
ulation, the designer can debug and check every aspect
of a program's operation before loading it into the
EPROM of the 2920. At the end of the simulation
session, the debuggedcode can be saved on an 1818-
n diskette file, using lhe SAVE command; parl or ali
of the simulation session can be saved on a diskette
file for future reference.

One example of a simulation command in volves the
designer issuing the command statement:

81MULATE FROM O TILL RAM x> .3
OR OVF = 1

This command simulates the program startingat time
zero, and wilh the program counler at zero, un ti l the
RAM location symbolically represented by x is greater
than 0.3 or until a register overflow occurs. Unlimited
logical operands are allowed. The hierarchy of logical
and arithmetic operations follows Fortran rul es.

Variables in the simulator are specified as read or
read-write, as shown in Fig. 2, during in teraction
between the designer and the sim ulator. To display
or replace a variable like DAR, the designer types DAR
(CR), and the simulator replies DAR-.00390625. To replace

VSP

the variable's value, the designer types in DAR-5; DAR
now equals 0.5. This operation can be completed with
any read-wri te register in the simulator.

One of the more important and useful commands
in the simulator is EVALUATE. lt evaluates an ex­
pression and displays the result in decimal, hexa­
decimal and binary.For example, solving the equation
SIN (20 • LOG (2.3») requires the input:

EVALUATE 81N (20 • (LOG (2.3)))
On the next line, the simulator displays the answer

in the three different bases, which is an advantage
in converting a number or resu lt to another base. The
syntax of the input expression is the same as that for
a Fortran arithmetic expression.

With the EVALUATE command, the simulator be­
comes an on-the-spot calculator. Although the EVAL­
UATE command is implici.tly incorporated into many
8M2920 instructions, it can be explicity incorporated
into user's instructions.

Another importan t capability of the 2920 simulator
is its input facility, which enables the designer to
specify input functions on any or ali of the four, 2920-
multiplexed, input pins. Therefore, the designe r can
input test signals just like an analog designer would,
to me'asure the system's performance.

Whenever the simulator encounters the command
code for an input function (e.g., IN2 or INO, which
indicate which channel should be sampledl, it eval­
uates the funct ion using the current values for the
variab les used. In addition, the following symbolic
constants can appear in the function: PI specifies
3.1415928; HPl means half of pi; TPI means t\Vice pi;
and ONE means 1. Certain built-in functions are also

ROM ~ 1'0 191 PA OG RAM STOAAG E

SIZE IE PROMI
192. 24 RUN~

, ;,.
,--- ':M:T039 ~ ';"

, ;,.
101

111 ---1\ SCRA TCH A ~
AID ~ PAO Oi ALU

121 MUX - elR -v' c MEMQAY ,." ~ •

IH g 51GIN

IN I 51GIN

IH 2 SIG IN

III S&H i-r- B B

~ ír I ::c. OMU X
CAP 2 •

14) SIGIN

S&H',

..:; 7
X,

11'ROG ~ CLOCI< LOGIC
TlNSTI

x~ • L...-- DIA
PC PROG RAM

CCll(COUNTER

T T-T-T-T-T- ! !
W(R)S IN COlOR ARE ACCE SSIBlE IN THE SlMULATOA

tSl~TOR WORDS FOR REAO-(H . .'I' USE
*EXTEANAL CQMPDNENTS

VFlEF 'SV -5V õ1 GRDO GROA. Ml M'
QVF'

RST/EOP

SIGOUT 101 OUT ",

SIGOUT 111 OUT I'

SIGOUT 121 OUT 2'

S I GOU~ 131 OUT 3 1

SIGOUT 14) OUT 4'

5100UT (51 OUT "

SIGOuT (6) OUT 6'

SIGOUT 111 OUT 7'

2. The slmulator facilitates program debu gging, by letting
thedeslgner examine and change the contents of memory

locations, registers and input lines and displaythe state
of output lines from the demultlplexer.

109

available: AIlS means absolute value. SQH mcans the
sq uare root of a num ber or variable. SAW mcans a
sawtooth wave. SQW means a square wave and LOG
is the natural logo For example:

INO - SIN (TP I • T • 500)
which indicates a sine wave at 500 Hz;

INI = SA W (1000 • T • TPI) • EXP (-T.)
wh ich indicates a descreasing. l-kHz. sawtooth wave;

IN2 = SIN (TP I • T) • (la + 1500 • T)
which ind icates a sweeping s ine wave; a nd
IN3 = IF 0.1 < T AND T < 0.15 THEN ONE ELSE O
which gives a pulse hav ing a duration of 0.05 S.

The IFITHEN/ ELSE construction specifies the condi­
tions to be evaluated. If the conditions between the
word IF and the word THEN are meto the value after
the ELSE is used.

Finally. as previously descr ibed. SIMULATE initiates
operation of the SM2920. and BHEAKPOINT stops sim­
ulation . These two commands change the simulator's
mode of operation: On executing SIMULATE. the sim­
ulator changes from the interrogation to the s im­
ulation mode; when the BREAKPOINTcondition occurs.
the s imulator changes back to the interrogation mode.
Halting conditions maybe spec ified in several ways.
depending on whether sim ulation is ONCEor condition
ANO/OR condition ...• or FORE\"ER.

Simulating OIiCE is si ngle-step s imulation. The sim­
ulator executes one instruction. halts. and reverts back
to the interrogation mode. Condition AliO/OH cond i­
tion simulates until cerlain conditions (logical
and/ or arilhmetic) are mel. For example:
SIMULATE TILL SQR (LOG(OUTO)) > .3 AND

T > .OOI
means halt si mulation when the square root of the
natural log of oeTO is grealer lhan 0.3 and lime is
greater lhan I ms. Finally. the SM2920 can s imu late
FORE\"ER. i.e .• unlil lhe syslem is turned off or the
escape key. which aborts simulation. is hil.

During simulation. trace dala are collected and
displa)"ed. The TRACE conlrol commands s imullane­
ously record and d ispla)" the value of any register.
status bil or expression in a lrace data burrer. In the
interrogation mode. the THACE control co m mands
redispla)" anO' of the trace data collected during the
previous simulation. The designe r can "nable or di s­
able trace data to be coll ected during simulalion by
selting condilions which qual ify or inhibit co llection.

The TRA CE control commands can be used. for
example. lo lest a filter. To find lhe freque ncy re­
sponse of a filter program in lhe simulated ROM
memorO'. the designer firsl specifies an inpu t sweeping
sine wave. This wave sweeps across the frequency
spectrum of interest; for example. 10 Hz at a rate of
1500 Hz/s and a gain of unily in the pass bando To
collect the data of frequency (in Hz) and gain (i n dB).
the TRACE com mand would be:
TRACE = (10 + 1500' T). 20' (.4342945' (LOG (ABS

(OUTO/ ONE »))).
Multiplication by the constant 0.4342945 converts the
natural log into log base 10.

110

UST SESSION
cw OISK . LP, ETC.

LOAO OBJECT
COoE

SET SAMPlE
RATE

DEflPE SYM80lS

SEr BREAKPOINTS
OEfNE TRACE

QUAlIflERS
SPEClfY TRACE ITEMS

SPEClf Y INPVT
SIGNAl

START SIMUlATION

START INTERROGATION

DISPlAY ONE .
SEVERAL O'R

ALl BuFFER ENTRIES

E)(Ah4IHE
CHANGE

REGISTERS

?

YES

NO

NO

EXAMINE MEMQRy
(ROM OR RAM)

REGISTERS, 1/0 PORTS
PSEUDO REGISTEAS

PATCH, OR 0iANGE ROM
MEMORV

SET ltfTlAl
COt.OItlONS IN R AM

STORE OH DI$K
lJNE PRINTER ,
PAPER TAPE.

ECT ,

HALT

NO

3. The Ilow dlagram lIIus tra tes the slmulation 01. typical.
assembled. 2920 programo Alter deslgn changes.
slmulation 15 repeated, as implied by arranglng the last
decis lon block to retu rn to the "start·slmulation" block.

If the s imu'lation began at t ime (T) equals zero. then
the input signal would begin a t la H z and increase
linear ly. The displayed traced data would show the
frequency in Hz in co lumn 1 a nd gain in decibels in
colu mn 2. If t he data were saved on a diskette. there
\Vould be enough points to plot t he frequency response
of the filter a nd to determine if the frequency response
\Vere correct for the system . ••

How useful?
Immediate design appl ication
With in the next year
Not applicable

Circle No.

556
557
558

FI ECTRON IC I)t:SIGN 25, Dcccmbcr 6, 1979

