TDA Progress Report 42-63

March and April 1981

An Evaluation of the Intel 2920 Digital
Signal Processing Integrated Circuit

J. Heller

Communications Systems Research Section

The Intel 2920 integrated circuit is a device for digital signal processing. Consisting of

a digital-to-analog converter, accumulator, read-write memory and UV-erasable read-only

_memory, the circuit can convert an analog signal to a digital representation, perform
mathematical operations on the digital signal and subsequently convert the digital signal

to an analog output. In addition to the 2920 circuit, Intel also offers development.

software tailored for programming the 2920. This is a report of experiences with the

2920 circuit and its software.

I. Introduction

Intel’s 2920 digital signal processor is the first commercially
available integrated circuit which allows the user to implement
custom digital signal processing algorithms. (Two other cir-
cuits, American Microsystem’s S2811 and NEC’s UPD7720 are
not available yet.) Unlike the 7720, Intel’s device performs
both analog-to-digital and digital-to-analog conversion on the
chip. All the circuits are designed for the high-speed multipli-
cations and additions which are the basis of digital filtering
algorithms.

The 2920 is being evaluated for use as a low-pass filter. This
report describes the experiences obtained from the circuit
itself and the support software from Intel. Although the soft-
ware proved to be éxceptional, the chip has drawbacks of a
serious nature which could limit its use.

108

. 2920 Functional Description

The functional block diagram is reproduced in Fig. 1. The
chip can accept up to 4 analog signals at *1 to +2 volts peak
depending on an external reference voltage. These signals can
be multiplexed to a sample-and-hold circuit which, in conjunc-
tion with a digital-to-analog converter, can be configured,
under programmed control, to act as an analog-to-digital con-
verter with 8-bit precision plus a sign bit. The digital section of .
the 2920 features a 40-word, 25-bit wide read/write memory
(RAM), and a shift register capable of shifting up to 13 bits to
the right or 2 bits to the left in a single instruction cycle. The
shifter is connected to one port of an arithmetic and logic unit
(ALU), while the other ALU input port receives data from the
RAM. The output of the ALU returns to the RAM. The ALU
features addition, subtraction, absolute value, “exclusive or,”
“and,” “limit” and other operations. Individual bits can also

be tested, although not in the ALU. The digital-to-analog
converter used for the conversion of analog signals is also used
to convert the digital representation back to the analog form
for one of eight sample and hold circuits. The chip sections are
controlled by a program stored in an UV erasable read-only
memory (EPROM) which can accommodate 192 24-bit
instructions. All instructions take the same amount of time to
execute which, for the 2920-16, is 600 nsec.

lll. Programming Considerations

The 2920 program runs as an endless loop with no jumps
allowed. One instruction (EOP) can be used at the end of the
program to jump to the beginning if not all 192 EPROM
locations are needed. This instruction must be located at word
addresses divisible by 4 and must be followed by 3 NOPs.

In order to convert analog signals to digital values, an
instruction sequence consisting of a group of IN codes fol-
lowed by a CVT-NOP-NOP group for each bit is required.
Thus, a 9-bit conversion requires 35 instructions. To output an
analog signal, approximately 7 NOPs are needed prior to the
OUT instructions to allow the digital-to-analog buffer ampli-
fier to settle. Seven OUT instructions are recommended in
order to ensure that the sample-and-hold circuit captures the
correct value.

Instructions can be executed on a conditional basis depend-
ing on the state of a specified bit in the DAR register. If the
instruction condition is not fulfilled, a NOP is executed
instead. During program segments in which the DAR is not
used, it is possible to execute IN or OUT instructions simulta-
neously with ALU instructions.

IV. 2920 Inadequacies

The 2920 circuit has a number of problems which can cause
difficulties of varying degrees. These include faulty instruc-
tions as well as gain and offset errors. It should be noted that
the following comments apply to the 2920-16 (600-nsec
instruction cycle time). The 400-nsec part (2920-10) is
unavailable.

Two instructions fail to work properly. The ABA instruc-
tion, which takes the absolute value of the contents of a
source register and then adds it to the contents of a destina-
tion register, does not execute correctly at 600 nsec. In order
to use this instruction, the clock rate must be reduced to
4 MHz or less; otherwise the instruction should be replaced by
the sequences ABS and ADD. The second faulty instruction,
EOP, is used as a jump from the end to the beginning of the
program, a useful feature when not all 192 ROM locations are

needed. The EOP instruction requires a pull-up resistor on
pin 21 where the pin is connected internally to an open drain
MOS transistor. The pin is also an input, presumably to a
MOS transistor gate, for the reset function. Thus in order for
the EOP instruction to operate properly, the voltage at pin 21
must go low at the proper time in order to reset the program
counter. At present, in addition to the pull-up resistor at
pin 21, a 15-pf capacitor must be connected between pin 21
and ground for the EOP instruction to work. According to
Intel, another open drain output at pin 22, OF, does not
operate properly. This pin goes low when the accumulator
overflows.

The 2920 is subject to analog complaints as well. Given a
reference voltage of +1.000 volts, the maximum analog out-
put voltage is approximately *0.93 volts instead of %1 volt.
For a 2-V reference, the range is +1.8 V. The 2920 also suffers
from a large output offset error which varies with the signal
sign and magnitude. As an example, the offset error measured
for one 2920 output channel ranged from +13 mV at -0.9 V
to -62mV at 0.0V to -77mV at +0.9 V. The results of an
experiment point to a nonlinearity in the sample-and-hold
buffers driving the output pins. Whatever the cause, errors of
this size are serious in low-pass filter applications; hence a
number of fixes have been suggested.

With the first method an uncommitted output pin is con-
nected to an unused input. The desired output signal from the
DAR is first sent to the previously uncommitted output chan-
nel and then read-in to the DAR via the previously unused
input channel. The difference between the new value in the
DAR and the original DAR contents is used as a correction —
the corrected value is then output to the appropriate channel.
The success of this method depends on how closely the
“ancommitted” output channel matches the channel which
outputs the corrected signal.

Another scheme chops the signal by alternately multiplying
it by +1 then -1. The output is capacitively coupled to a
rectifier which detects the waveform envelope, followed by a
low-pass filter for smoothing out the sampling pulses. The
chopping can be accomplished by first loading the DAR with
the true digital signal representation and converting it to its
analog value. Then the same number is exclusive or’d with -1,
loaded into the DAR and converted to its analog value. Both
signals are alternately output on the same channel.

A third method is based on “correction curve” code
appended to the filter program. The curve is determined
experimentally by programming the 2920 to act as a wire and
then applying accurately measured input voltages over the
range of operation and measuring the output voltages. These
data can be used with the Intel-supplied signal processing

109

compiler software to generate code which multiplies the digital
value by a correction factor prior to loading into the DAR for
output. This approach requires a substantial amount of read-
only memory for good accuracy.

A revision of the 2920 from the present “D step™” to an
“E step” version is planned by Intel for this summer. To what
extent the above problems will be solved remains to be seen.

V. Program Development: Hardware

The only necessary hardware for 2920 programming is an
EPROM programmer (and an ultraviolet light EPROM eraser).
However, in order to take advantage of the support software,
an Intel Intellec Development System is required. The 2920
applications software is shipped on both single and double
density floppy disc formats. Software modules are included
which utilize the floating-point hardware board option in the
- Intellec; otherwise, software is used for these calculations. A
special PROM programming card and adapter socket are also
required for the Intellec PROM programmer.

VI. Program Development: Software

Three programs are used to develop code for the 2920: the
2920 signal processing applications software/compiler, a 2920
assembler and a simulator. The applications software/compiler
program is the centerpiece of the 2920 software development
scheme. The use of the term ‘“compiler” is appropriate as the
program enables the engineer to examine and specify filters
with familiar design terminology which the compiler in turn
converts into 2920 assembly code.

The compiler provides the user with three planes, s, Ts, and
z, and the commands for creating, moving and deleting poles
and zeros on these planes. The s plane is used to characterize
any circuitry preceding the 2920 in the signal path. This is a
particularly useful feature for modeling anti-aliasing filters.
Poles and zeros are also placed in the Ts and z planes, and it is
these values which are used to represent the 2920 digital filter.
The Ts plane is provided for designers who prefer a sampling
plane that corresponds more closely to the s plane than the z
plane does. Prior to code generation, the poles and zeros
placed on the T's plane are mapped to the z plane using the
transform €27 Ts(x+jy) where T is the sampling period and
s(x +jy) are the pole/zero coordinates on the Ts plane, Readers
may recognize this mapping as the “matched z transform.”
Finally, since the 2920 uses sample-and-hold circuits on the
analog outputs, it is possible to model this effect as well by
using the HOLD ON command.

The usefulness of the compiler is apparent after the poles
and zeros for the signal path have been specified, for then it is

110

possible to graph, with simple commands, gain and phase as
functions of frequency. In addition, the step and impulse
responses of the filter can be displayed. After a suitable
pole/zero constellation is determined, the compiler is used to
generate the 2920 assembly code. It is also possible to gener-
ate code for implementing operations such as limiting or
rectification.

Another powerful capability of the compiler is the macro
feature. A macro is a compiler directive which executes
sequences of compiler commands upon invocation of the
macro name. Macros are utilized where repetitive sections of
code are required or for designing a family of filters, where the
structure is the same but parameters such as cutoff frequency
and ripple vary. The compiler comes with a number of macros
including ones for generating Butterworth and Chebyshev fil-
ters. The user can also write and save new ones,

Another helpful aid is an arithmetic interpreter which
allows the user to enter a Fortran-like mathematical expression
for evaluation. An extremely valuable option is the ability of
the compiler to create a file which contains a record of all
subsequent compiler commands and responses. This is an aid
for reviewing previous design sessions.

The compiler has some drawbacks which the user should be
aware of. First, the matched z transform which is used to map
from the Ts to z plane can give incorrect results (e.g., when the
zeros in the Ts plane have center frequencies greater than half
the sampling frequency (Ref. 1)). Another difficulty occurs
when the compiler generates 2920 assembly code. The code
for each pole and/or zero is produced independently of the
previous poles and zeros; hence it is necessary to use equiva-
lence statements such as QUTPI EQU INPZ2 to link the
output variable of a pole or zero to the input variable for the
next pole or zero. A similar procedure is required for connect-
ing the analog input and output routines to the rest of the
filter code. Finally, the gain calculation occasionally suffered
from overflow.

The 2920 assembler is an easy-to-use program that can be
invoked, along with options, with a single command. The
assembler terminates after the creation of an object file suit-
able for loading into the 2920 EPROM and a list file showing
the original assembly code and its address assignment in the
2920. An important debug option is available which, when
used in conjunction with the simulator (see below) enables the
designer to reference 2920 memory locations with the same
symbolic names as specified in the assembly code provided the
names are preceded by “RAM.” or “ROM.” ROM instructions
can be altered using symbolic code also.

The 2920 simulator is the other significant piece of soft-
ware that Intel provides. Using as input the object code gener-
ated by the assembler, the simulator interprets the 2920 code
instruction by instruction. It is similar in operation to software
debuggers as it provides a breakpoint, a breakpoint qualifier
(i.e., those conditions which must be met at, and prior to, the
breakpoint), and a trace feature which saves the values of
selected analog inputs and outputs as well as the contents of
2920 memory locations as a function of time or iteration
number. Also the simulation can be halted so that chosen
memory locations, etc., may be displayed. The simulator also
provides a “calculator” feature similar to the compiler; how-
ever, it does not accept numbers in scientific format (e.g.,
4.2E5), unlike the compiler version, an omission which is quite
annoying.

It is recommended that the simulator be used in conjunc-
tion with a floating point hardware board in order to speed up
calculations. Another time-wasting operation is the simulation
of input and output conversion codes. Thus, in order to reduce
execution time it is worth the bother to create a “streamlined”
version of the assembly code for submittal to the simulator.
Even this will not be satisfactory for simulations which must
evaluate the 2920 over minutes, not just seconds. One simula-
tion carried out during the course of the project required 4
days to generate 15 minutes worth of data. Users should also
be aware that the RAM locations in the simulator representing
the 2920 RAM are not cleared prior to execution of the
simulation. It appears, however, that the 2920 circuit RAM is
not cleared and indeed has random values on power-up, so this
is perhaps a “realistic” (if unwitting) simulation. The simulator
allows users to initialize RAM locations if desired.

The simulator’s analog output values include an added
offset error representing the error incurred by conversion of
the two’s complement digital representation to a sign magni-
tude format in the 2920 D-to-A converter. As the offset errors
seen on actual 2920 devices are large, the simulator offset
error is negligible.

One other inconvenience is that the simulator must be
informed of the time required to execute one complete pass of
the code. It would be desirable to specify the execution time
for a single instruction instead and let the simulator figure out
the rest. Nevertheless, the simulator along with the compiler
and assembler are indispensible for the development of 2920
code in a reasonable amount of time.

All the software operated flawlessly. None of the programs
entered states from which there was no return. Some of the
terminology could have been coordinated better. One LOADs

a file in the simulator but INCLUDEs a file in the compiler,
for example, and the “calculator” feature was not identical in
both the simulator and compiler. Nevertheless, these are small
gripes about smooth-operating software. The compiler and
simulator have HELP commands which provide the user with
explanations about program commands. These were not found
to be useful.

VIil. Software Documentation

Three manuals accompanied the software — one each for
the assembler, compiler and simulator. There is very little
overlap of information.

The 2920 Assembly Language Manual (Intel No. 9800987-
01) discusses the 2920 functional elements, instructions and
assembly language symbols and format. One chapter desctibes
design techniques including multiplication and division meth-
ods. The bit patterns of the 2920 instructions are presented
in an appendix. Two other appendices are devoted to carry
and overflow and two’s complement data handling considera-
tions. This information is important and is not repeated
elsewhere.

The 2920 Signal Processing Applications Software/
Compiler User’s Guide (No. 121529-003, Rev. B) is the least
accessible of the three manuals. The guide does not give a
satisfying overview of the design approach — instead, a
“sample session” of 19 pages is presented for the reader to
glean whatever information he can. Most of the manual is
devoted to compiler command definitions, which are not
always clear. Listings are included for the macros which have
been supplied with the compiler. Some of the more useful data
are in the appendices under “Notes and Cautions,” “Design of
Complex Digital Filters Used in the 2920,” and “Formulas
Used by the SPAS20 Compiler.” In short, it is more of a
reference manual than a user’s guide.

On the other hand, the “2920 Simulator User’s Guide”
(No. 9800988-02 Rev. B) is easier to assimilate due, in part, to
its brevity. The commands are not involved so the user cah get
started quickly.

A fourth document is necessary for programming the 2920:
“Universal PROM Programmer User’s Manual” (No. 9800819-
01). Sections 5-33 through 5-38 are devoted to programming
the 2920 EPROM. Although somewhat understandable, an
example showing the required commands would be of great
value if only as a time-saver. To summarize, users will find it
necessary to familiarize themselves with all three software
manuals.

11 -

Viil. Other Documentation

Intel publishes two other pieces of literature which are
worth reading. The “2920 Analog Signal Processor Design
Handbook” is a nonmathematical tutorial in digital signal
processing followed by a discussion of the 2920 architecture.
Subsequent chapters deal with realizing arithmetic functions
(similar to the discussion in the assembly language manual),
oscillators and nonlinear functions, different filter types,
implementation techniques, etc. Design examples are shown
including one section on breadboarding. A weak chapter on
the software support programs (i.e., compiler, simulator, etc.)
is included. For designers who are considering the 2920 as a
filter candidate and need a detailed discussion of the 2920,
this book is the recommended one.

The final document which should be consulted is the
“2920-16 Signal Processor” data sheet (October 1980, marked

“Preliminary”). Unlike the earlier data sheet “2920.10”
(which incidentally refers to a 10-MHz 2920 not mentioned on
the newer sheet) this paper provides specifications on the
analog performance of the device, although no mention is
made of the inadequacies cited in Section IV above. The
document presents the only good discussion of input and
output code-timing requirements.

IX. Conclusion

The concepts embodied by the 2920 device represent a
formidable tool for realizing compact digital filters. The soft-
ware support is excellent. However, new users should be cogni-
zant of 2920 device problems.

Reference

1. Rabiner, L., and Gold, B., Theory and Application of Digital Signal Processing, New

York, 1975, pp. 224-6.

112

X1/CLK X2 CCLK ves GRDD Vce

N e ° °
CLOCK
& TIMING vsP .
y PROM
PROGRAM RUN
COUNTER

RST/EOP O—ed

&%
SCALER

ANALOG

CONTROL
SIGOUTO
SIGINO o—] outpyr 5 SiGouT!
-0 SIGOUT2
e o [=

SIGIN2 0—| SAMPLE/ o

HOLD BUFFER tg SIGOUTS
SIGIN3 O~ AMPS Siaours
Lo sIGOUT?

bl o ! !

CAP1 CAP2 GRDA VREF M1 M2

Fig. 1. Block diagram of 2920 signal processor

113

