
TDA progress Repor! 42-63 March and April1981 

An Evaluation of the Intel-2920 Digital 
Signal Processing Integrated Circuit 

J. Heller 
Communications Systems Research Section 

The Intel 2920 integrated circuit is a device for digital signal processing. Consisting of 
a digital-to-analog converter, accumulator, read-write memory and UV-erasable read-only 

. memory, the circuit can convert an analog signal to a digital representation, perform 
mathematical operations on lhe digital signal and subsequently converl lhe digital signal 
to an analog output. In addition to the 2920 circuit, Intel also offers development. 
software tailored for programming the 2920. This is a report of experiences with the 
2920 circuit and its software. 

I. Introduction 

Intel's 2920 digital signal processor is the first commercially 
available integrated circuit which allows the use r to implement 
custom digital signal processing algorithms. (Two other cir­
cuits, American Microsystem's S2811 and NEC's UPD7720 are 
not available yet.) Unlike the 7720, Intel's device performs 
both analog-to-digital and digital-to-analog conversion on the 
chip. AlI the circuits are designed for the high-speed multipli­
cations and additions which are the basis of digital flltering 
algorithms. 

The 2920 is being evaluated for use as a low-pass fIlter. This 
report describes the experiences obtained from the circuit 
itself and the support software from Intel. Although the soft­
ware proved to be exceptional, the chip has drawbacks of a 
serious nature which could limit its use. 

108 

11. 2920 Functional Description 

The functional block diagram is reproduced in Fig. I. The 
chip can accept up to 4 analog signals at ±I to ±2 volts peak 
depending on an externaI reference voltage. These signals can 
be multiplexed to a sample-and-hold circuit which, in conjunc­
tion with a digital-to-analog converter, can be configured, 
under programmed control, to act as an analog-to-digital con­
verter with 8-bit precision plus a sign bit. The digital sectiQn of, 
the 2920 features a 40-word, 25-bit wide readjwrite memory 
(RAM), and a shift register capable of shifting up to 13 bits to 
the right or 2 bits to the left in a single instruction cycle. The 
shifter is connected to one port of an arithmetic and logic unit 
(ALU), while the other ALU input port receives data from the 
RAM. The output of the ALU returns to the RAM. The ALU 
features addition, subtraction, absolute value, "exclusive or," 
"and," "limit" and other operatiorís. Individual bits can also 



be tested, although not in the ALU. The digital-to-analog 
converter used for the conversion of analog signals is also used 
to convert the digital representation back to the anaIog form 
for one of eight sample and hold circuits. The chip sections are 
controlled by a program stored in an UV erasable read-only 
memory (EPROM) which can accommodate 192 24-bit 
instructions. AlI instructions take the same amount of time to 
execute which, for the 2920-16, is 600 nsec. 

111. Programming Considerations 

The 2920 program runs as an endIess loop with no jumps 
allowed. One instruction (EOP) can be used at the end of the 
program to jump to the beginning if not alI 192 EPROM 
locations are needed. This instruction must be located at word 
addresses divisible by 4 and must be followed by 3 NOPs. 

In order to convert analog signals to digital values, an 
instruetion sequence eonsisting of agroup of IN eodes fol­
lowed by a CVT-NOP-NOP group for each bit is required. 
Thus, a 9:bit conversion requires 35 instructions. To output an 
analog signal, approximately 7 NOPs are needed prior to the 
OUT instructions to alIow the digital-to-analog buffer ampli­
fier to settle. Seven OUT instructions are recommended in 
order to ensure that the sample-and-hold circuit captures the 
correct value. 

Instructions can be executed on a conditional basis depend­
ing on the state of a specified bit in the DAR register. If the 
instruction condition is not fulfilled, a NOP is executed 
instead. During program segments in which the DAR is not 
used, it is possible to execute IN or OUT instructions simulta­
neously with ALU instructions. 

IV. 2920lnadequacies 

The 2920 circuit has a number of problems which ean eause 
difficulties of varying degrees. These include faulty instrue­
tions as welI as gain and offset errors. It should be noted that 
the following comments apply to the 2920-16 (600-nsec 
instruction eyc1e time). The 400-nsec part (2920-10) is 
unavailable. 

Two instructions fai! to work proper1y. The ABA instruc­
tion, which takes the absolute value of the contents of a 
source register and then adds it to the contents of a destina­
tion register, does not execute correctly at 600 nsec. In order 
to use this instruction, the clock rate must be reduced to 
4 MHz or less; otherwise the instruction should be replaced by 
the sequences ABS and ADD. The second faulty instruction, 
EOP, is used as a jump from the end to the beginning of the 
program, a useful feature when not alI 192 ROM locations are 

needed. The EOP instruction requires a pull-up resistor on 
pin 21 where the pin is connected internally to an open {ilrain 
MOS transistor. The pin is also an input, presumably to a 
MOS transistor gate, for the reset function. Thus in order for 
the EOP instruetion to operate properly, the voltage at pin 21 
must go low at the proper time in order to reset the program 
counter. At present, in addition to the pull-up resistor at 
pin 21, a 15-pf capacitor must be connected between pin 21 
and ground for the EOP instruction to work. According to 
Intel, another open drain output at pin 22, OF, does not 
operate properly. This pin goes 10w when the aceumulator 
overflows. 

The 2920 is subject to analog complaints as well. Given a 
reference voltage of +1.000 volts, the maximum analog out­
put voltage is approximately ±0.93 volts instead of ±1 volt. 
For a 2-V reference, the range is ±1.8 V. The 2920 also suffers 
from a large output offset error which varies with the s\gnal 
sign and magnitude. As an example, the offset error measured 
for one 2920 output channel ranged from +13 mV at -0.9 V 
to -62 mV at 0.0 V to -77 mV at +0.9 V. The results af an 
experiment point to a nonlinearity in the sample-and-hold 
buffers driving the output pins. Whatever the cause, errors of 
this size are serious in low-pass filter applications; hence a 
numberof fixes have been suggested. 

With the first method an uncommitted output pin is con­
nected to an unused input. The desired output signal from the 
DAR is first sent to the previously uncommitted output chan­
nel and then read-in to the DAR via the previously unused 
input channel. The difference between the new value in the 
DAR and the original DAR contents is used as a correction -
the correeted value is then output to the appropriate channel. 
The success of this method depends on how closely the 
"uncommitted" output channel matches the channel which 
outputs the corrected signal. 

Another scheme chops the signal by alternately multiplying 
it by + 1 then -1. The output is capacitively coupled to a 
rectifier which detects the waveform envelope, followed by a 
low-pass filter for smoothing out the sampling pulses. The 
chopping can be accomplished by first loading the DAR with 
the true digital signal representation and converting it to its 
analog value. Then the same number is exclusive or'd with -1, 
loaded into the DAR and converted to its analog value. Both 
signals are alternately output on the same channeI. 

A third method is based on "correction curve" code 
appended to the filter programo The curve is determined 
experimentally by programming the 2920 to act as a wire and 
then applying accurately measured input voltages over the 
range of operation and measuring the output voltages. These 
data can be used with the Intel-supplied signal processing 

109 



compile r software to generate code which multiplies the digital 
value by a correction facto r prior to loading into the DAR for 
output. This approach requires a substantial amount of read­
only memory for good accuracy. 

A revision of the 2920 from the present "D step" to an 
"E step" version is planned by Intel for this summer. To what 
extent the above problems will be solved remains to be seen. 

V. Program Development: Hardware 

The only necessary hardware for 2920 programming is an 
EPROM programmer (and an ultraviolet light EPROM eraser). 
However, in order to take advantage of the support software, 
an Intel Intellec Development System is required. The 2920 
applications software is shipped on both single and double 
density floppy disc formats. Software mqdules are included 
which utilize the floating-point hardware board option in the 
Intellec; otherwise, software is used for these calculations. A 
special PROM programming card and adapter socket are also 
required for the Intellec PROM programmer. 

VI. Program Development: Software 
Three programs are used to develop code for the 2920: the 

2920 signal processing applications software/compiler, a 2920 
assembler and a simulator. The applications software/compile r 
program is the centerpiece of the 2920 software development 
scheme. The use of the term "compiler" is appropriate as the 
program enables the engineer to examine and specify filters 
with familiar design terminolcigy which the compile r in turn 
converts into 2920 assembly code. 

The compile r provides the user with three planes, s, Ts, and 
z, and the commands for creating, moving and deleting poles 
and zeros on these planes. The s plane is used to characterize 
any circuitry preceding the 2920 in the signal path. This is a 
particularly useful feature for modeling anti-aliasing filters. 
Poles and zeros are also placed in the Ts and z planes, and it is 
these values which are used to represent the 2920 digital filter. 
The Ts plane is provided for designers who prefer a sampling 
plane that corresponds more closely to the s plane than the z 
plane does. Prior to code generation, the poles and zeros 
placed on the Ts plane are mapped to the z plane using the 
transform e211 Ts(x+jy) where T is the sampling period and 
s(x + jy) are the pole/zero coordinates on the Ts plane. Readers 
may recognize this mapping as the "matched z transform." 
Finally, since the 2920 uses sample-and-hold circuits on the 
analog outputs, it is possible to model this effect as well by 
using the HOLD ON command. 

The usefulness of the compiler is apparent after the poles 
and zeros for the signal path have been specified, for then it is 

110 

possible to graph, with sim pie commands, gain and phase as 
functions of frequency. In addition, the step and impulse 
responses of the filter can be displayed. After a suitable 
pole/zero constellation is determined, the compile r is used to 
generate the 2920 assembly code. It is also possible to g()ner­
ate code for implementing operations such as limiting or 
rectifica tjon. 

Another powerful capability of the compiler is the macro 
feature. A macro is a compile r directive which executes 
sequences of compiler commands upon invocation of the 
macro name. Macros are utilized where repetitive sections of 
code are required or for designing a family of filters, where the 
structure is the same but parameters such as cutoff frequency 
and ripple vary. The compile r comes with a number of macros 
inc1uding ones for generating Butterworth and Chebyshev fil­
ters. The user can also write and save new ones. 

Another helpful aid is an arithmetic interprete r which 
allows the user to enter a Fortran-like mathematical expression 
for evaluation. An extremely valuable option is the ability of 
the compiler to create a file which contains a record of all 
subsequent compiler commands and responses. This is an aid 
for reviewing previous design sessions. 

The compiler has some drawbacks which the user should be 
aware of. First, the matched z transform which is used to map 
from the Ts to z plane can give incorrect results (e.g., when the 
zeros in the Ts plane have center frequencies greater than half 
the sampling frequency (Ref. 1». Another difficulty occurs 
when the compile r generates 2920 assembly code. The code 
for each pole and/or zero is produced independent1y" of the 
previous poles and zeros; hence it is necessary to use equiva­
lence statements such as OUTPl EQU INPZ2 to link the 
output variable of a pole or zero to the input variable for the 
next pole or zero. A similar procedure is required for connect­
ing the analog input and output routines to the rest of the 
filter code. Finally, the gain calculation occasionally suffered 
from overflow. 

The 2920 assembler is an easy-to-use program that can be 
invoked, along with options, with a single command. The 
assembler terminates after the creation of an object file suit­
able for loading into the 2920 EPROM and a list file showing 
the original assembly code and its address assignrnent ih the 
2920. An important debug option is available which, when 
used in conjunction with the simulator (see below) enables the 
designe r to reference 2920 memory locations with the same 
symbolic names as specified in the assembly code provided the 
names are preceded by "RAM." or "ROM." ROM instructions 
can be altered using symbolic code also. 



The 2920 simulator is the other significant piece of soft­
ware that Intel provides. Using as input the object code gene r­
ated by the assembler, the simulator interprets the 2920 code 
instruction by instruction. I t is similar in operation to software 
debuggers as it provides a breakpoint, a breakpoint qualifier 
(Le., those conditions which must be met at, and prior to, the 
breakpoint), and a trace feature which saves the values of 
selected analog inputs and outputs as well as the contents of 
2920 memory locations as a function of time or iteration 
number. AIso the simulation can be halted so that chosen 
memory locations, etc., may be displayed. The simulator also 
provides a "calculator" feature similar to the compiler; how­
ever, it does not accept numbers in scientific format (e.g., 
4.2E5), unlike the compiler version, an omission which is quite 
annoying. 

It is recommended that the simulator be used in conjunc­
tion with a floating point hardware board in order to speed up 
calculations. Another time-wasting operation is the simulation 
of input and output conversion codes. Thus, in order to reduce 
execution time it is worth the bother to create a "streamlined" 
version of the assembly code for submittal to the simulator. 
Even this will not be satisfactory for simulations which must 
evaluate the 2920 over minutes, not just seconds. One simula­
tion carried out during the course of the project required 4 
days to generate 15 minutes worth of data. Users should also 
be aware that the RAM locations in the simulator representing 
the 2920 RAM are not c1eared prior to execution of the 
simulation. It appears, however, that the 2920 circuit RAM is 
not c1eared and indeed has random values on power-up, so this 
is perhaps a "realistic" (if unwitting) simulation. The simulator 
allows users to initialize RAM locations if desired. 

The simulator's analog output values inc1ude an added 
offset error representing the error incurred by conversion of 
the two's complement digital representation to a sign magni­
tude format in the 2920 D-to-A converter. As the offset errors 
seen on actual 2920 devices are large, the simulator offset 
error is negligible. 

One other inconvenience is that the simulator must be 
.informed of the time required to execute one complete pass of 
the code. It would be desirable to specify the execution time 
for a single instruction instead and let the simulator figure out 
the resto Nevertheless, the simulator along with the compiler 
and assembler are indispensible for the development of 2920 
code in a reasonable amount of time. 

AlI the software operated flawlessly. None of the programs 
entered states from which there was no returno Some of the 
terminology could have been coordinated better. One LOADs 

a file in the simulator but INCLUDEs a me in the compile r, 
for example, and the "calculator" feature was not identical in 
both the simulator and compiler. Nevertheless, these are small 
gripes about smooth-operating software. The compiler and 
simulator have HELP commands which provide the user with 
explanations about program commands. These were not found 
to be useful. 

VII. Software Documentation 
Three manuaIs accompanied the software - one each for 

the assembler, compile r and simulator. There is very l!ittle 
overlap of information. 

The 2920 Assembly Language Manual (Intel No. 9800987-
01) discusses the 2920 functional elements, instructions and 
assembly language symbols and format. One chapter desctibes 
design techniques inc1uding multiplication and division meth­
ods. The bit patterns of the 2920 instructions are presented 
in an appendix. Two other appendices are devoted to carry 
and overflow and two's complement data handling considera­
tions. This information is important and is not repeated 
elsewhere. 

The 2920 Signal Processing Applications Software/ 
Compiler User's Guide (No. 121529-003, Rev. B) is the least 
accessible of the three manuals. The guide does not give a 
satisfying overview of the design approach - instead, a 
"sample session" of 19 pages is presented for the reader to 
glean whatever information he cano Most of the manual is 
devoted to compiler command definitions, which are not 
always c1ear. Listings are inc1uded for the macros which have 
been supplied with the compileI. Some of the more usefuldata 
are in the appendices under "Notes and Cautions," "Design of 
Complex Digital Filters Used in the 2920," and "Formulas 
Used by the SPAS20 Compiler." In short, it is more of a 
reference manual than a user's guide. 

On the other hand, the "2920 Simulator User's Guide" 
(No. 9800988-02 Rev. B) is easier to assimilate due, in part, to 
its brevity. The commands are not involved so the use r cah get 
started quick1y. 

A fourth document is necessary for programming the 2920: 
"Universal PROM Programmer User's Manual" (No. 9800819-
01). Sections 5-33 through 5-38 are devoted to programming 
the 2920 EPROM. Although somewhat understandable, an 
example showing the required commands would be of great 
value if only as a time-saver. To summarize, users will find it 
necessary to familiarize themselves with alI three software 
manuaIs. 

111 



VIII. Other Documentation 
Intel publishes two other pieces of literature which are 

worth reading. The "2920 Analog Signal Processor Design 
Handbook" is a nonmathematical tutorial in digital signal 
processing followed by a discussion of the 2920 architecture. 
Subsequent chapters deal with realizing arithmetic functions 
(similar to the discussion in the assembly language manual), 
oscillators and nonlinear functions, different filter types, 
implementation techniques, etc. Design examples are shown 
including one section on breadboarding. A weak chapter on 
the software support programs (i.e., compiler, simulator, etc.) 
is inc1uded. For designers who are considering the 2920 as a 
filter candidate and need a detailed discussion of the 2920, 
this book is the recommended one. 

The final document which should be consulted is the 
"2920-16 Signal Processor" data sheet (October 1980, marked 

"Preliminary"). Unlike the earlier data sheet "2920.10" 
(which incidentally refers to a IO-MHz 2920 not mentioned on 
the newer sheet) this paper provides specifications on the 
analog performance of the device, although no mention is 
made of the inadequacies cited in Section IV above. The 
document presents the only good discussion of input and 
output code-timing requirements. 

IX. Conclusion 
The concepts embodied by the 2920 de vice represent a 

formidable tool for realizing compact digital filters. The soft­
ware support is excellent. However, new users should be cogni­
zant of 2920 device problems. 

Reference 

112 

1. Rabiner, L., and Gold, B., Theory and Application of Digital Signal Processing, New 
York, 1975, pp. 224-6. 



X1/CLK X2 CCLK 

RST/EOp·o---.J 

SIGINO 

SIGIN1 

SIGIN2 

SIGIN3 

CAP1 CAP2 

VBB GRDD VCC 
o o o 

DAR 

VREF 

Fig. 1. Block diagram of 2920 signal processor 

M1 M2 

SIGOUTO 
SIGOUT1 
SIGOUT2 
SIGOUT3 
SIGOUT4 
SIGOUTS 
SIGOUT6 
SIGOUT7 

.. 

113 


