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5.1 Revisão 
 
 

5.1.1 Equações de Euler  
 

[5.1] 
 

[5.2] 
 
 

[5.3] 
 
 

[5.4] 
 

 
 

5.1.2 Sinal senoidal representado no domínio do tempo 
 
 

[5.5] 
 
 

  [5.6] 
 
 
 
 

5.1.3 Ortogonalidade de vetores 
 A figura 5.1 mostra que, dados dois vetores X e Y, a projeção do vetor Y sobre X 

é o vetor YX, na direção de X. Um vetor é definido pela sua amplitude e direção. Os dois 
vetores da figura possuem direções distintas e formam um determinado ângulo entre si.  

5 
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Fig. 5.1: Projeção de um vetor sobre outro 
 
 
Define-se "produto escalar de dois vetores" como sendo o produto de suas amplitudes e 

do cosseno do ângulo entre eles: 
 

[5.7] 
 
 
Dois vetores são ortogonais quando a projeção de um sobre o outro é nula, ou seja, 

quando o produto escalar deles é nulo. Dizemos que não há componente de um sobre o outro, 
ou ainda, que os dois vetores são independentes. A figura 5.2 mostra dois vetores ortogonais X 
e Y (cosα = 0) e que qualquer vetor no plano desses dois, pode ser representado pela soma de 
suas componentes em X e Y. 

Diz-se que este é um espaço vetorial de duas dimensões. 
A  figura mostra, ainda, que o vetor A pode ser representado pela soma vetorial de suas 

componentes ortogonais AX e Ay., ou seja: 
 

[5.8] 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.2: Representação de um vetor pela soma de suas componentes ortogonais 
 

5.1.4 Ortogonalidade de sinais 
 
Dois sinais são ortogonais em um determinado de tempo se: 
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[5.9] 

 
 
 
Considerando "n" e "m" números inteiros, pode-se demonstrar que, em 
qualquer intervalo igual ao período 1/f0, os seguintes sinais são ortogonais: 

 
 

[5.10] 
 

[5.11] 
 

[5.12] 
 

 
Da mesma forma que qualquer vetor pode ser expresso pela soma de suas 

componentes (ortogonais) em um espaço vetorial, prova-se que  ossinais também podem ser 
representados por suas componentes em um conjunto de funções ortogonais. 

Qualquer sinal elétrico, representado no tempo, pode, portanto, ser representado por 
um conjunto de senos e cossenos, já que estes são ortogonais. 

Esta é a base da transformada de Fourier. 
Os sinais senoidais são as componentes do sinal representado e o conjunto é chamado 

de "espectro". 
 
 

5.2 Sinal periódico          espectro discreto 
 

5.2.1 Série trigonométrica de Fourier 
 

A equação 5.13 mostra que uma função periódica v(t) pode ser 
representado por uma soma de sinais senoidais1 (série trigonométrica de 
Fourier): 

 
 

[5.13] 
 
 
O coeficiente "v0" corresponde ao valor médio do sinal: 
 

[5.14] 
 
 
Os coeficientes an e bn são dados por: 
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[5.15] 
 
 
 

[5.16] 
 
 
 
 

5.2.2 Experiência 
 
 
 
 

 
 
 
. 
 
 

5.2.3 Série exponencial de Fourier 
 
Outra forma de escrever a série de Fourier é utilizando as funções exponenciais: 
 
 

[5.17] 
 
 
 

[5.18] 
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• Micro + Power Point 
• Slides 

1  Será apresentada em aula a representação de uma 
onda dente de serra por suas componentes em 
frequência 
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5.3 Sinal qualquer          espectro contínuo 
 

5.3.1 Transformada de Fourier  
 
        F                                                                                                                  [5.19] 
 
 

[5.20] 
 
 

[5.21] 
 
 

[5.22] 
 
 

[5.23] 
 
  
 
 

5.3.2 Algumas transformadas de Fourier  
 
        F                                                                                                                  [5.24] 

 
        F                                                                                                                  [5.25] 

 
                 F                                                                                                                  [5.26] 
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Fig. 5.3: Tempo x Frequência 
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5.4 Elementos de circuitos: resistor, capacitor, indutor 
 
5.4.1 Resistor 
 
                      
 
 
 
 
 
 
 
 
 
 

Fig. 5.4a: Resistor 
 
 
5.4.2 Capacitor 
 
                        
 
 
 
 
 
 
 

Fig. 5.4b: Capacitor 
 
 
 
5.4.3 Indutor 
 
                      
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.4c: Indutor 

Henry 

Faraday 

Ohm 
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Usando a representação simplificada oriunda da transformação de 

Laplace e desconsiderando energias armazenada em t=0, substituímos o 
termo "jω" por "s". Então, os componentes de circuito são representados 
como: 

 
 
 
 
 

[5.27] 
 
 

[5.28] 
 
 

[5.29] 
 
 
 
 
A representação de Laplace para os componentes facilita muito a análise de circuitos, 

uma vez que pode-se tratar os problemas algebricamente (no domínio da frequência) ao invés 
de tratá-los com equações diferenciais (no domínio do tempo). 

 
 

5.5 Impedância 
 
A impedância de um circuito é sua resistência, que varia em função da frequência do 

sinal senoidal de entrada. 
A análise de circuitos com elementos RLC pode ser feita aplicando as leis de Kirchhoff, 

utilizando as respectivas transformadas de Laplace. 
Há dois métodos para solucionar circuitos utilizando a transformada de Laplace: 

utilizando equações diferenciais e transformando as impedâncias. Este último é mais 
conveniente ao propósito deste curso.   

 
 
 
 
 
 
 
 
 
 

Fig. 5.5: Impedância 
 

 Frequência 

Resistores 
 

Indutores 
 

Capacitores 
 

R

sL

sC
1

Laplace 
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5.6 Percepção do ouvido humano 
 
 
O engenheiro Harvey Fletcher, considerado por alguns como o 

inventor do áudio multicanal, em 1933 traçou (com Wilden Munson) curvas 
em que o ouvido humano tinha a mesma percepção da intensidade do som 
ao longo de faixa de frequência audível. D. W. Robinson e R. S. Dadson 
aprimoraram a curva, que foi incorporada na norma ISO-226. A figura 5.6 
mostra a curva segundo a revisão de 2003 da norma ISO. Atualmente é 
conhecida com “curva Robinson-Dadson”. 

H
              Harvey Fletcher 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.6: Curva Robinson-Dadson 
 
 
Cada uma das curvas da figura 5.6 indica que o ouvido humano percebe o som com a 

mesma intensidade. Por exemplo, um som puro com pressão sonora de 75 dB SPL e frequência 
de 31,5 Hz, parece, ao ouvido humano, ter a mesma intensidade que um som com 20 dB SPL e 
frequência de 1000 Hz. 

Cada curva define uma intensidade “aparente” denominada “phon”. 
A sensibilidade do ouvido humano à mudanças na intensidade do som também varia 

com a frequência.  
Para as frequências médias, mais ao centro da faixa audível, o ouvido somente consegue 

discernir mudanças quando chegam a 2 dB. Para valores altos de pressão, o ouvido consegue 
detectar variações de até 0,25 dB mas para baixas pressões o ouvido somente detecta 
diferenças por volta de 3 dB. Para baixa pressão e baixa frequência, em torno de 40 Hz, o 
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ouvido humano tem baixa sensibilidade a mudanças, à vezes precisando de quase 10 dB para 
notá-las. 
 

5.7 A voz 
 
 O sinal da voz humana possui uma densidade espectral que varia constantemente 
durante o tempo em que a pessoa fala. Entretanto, a longo termo, a densidade tem a aparência 
da figura 5.7.  
 As componentes de frequência se situam principalmente entre 100 e 8000 Hz havendo 
uma concentração maior de energia em torno de 400  Hz. 
 Estudos mostram que a faixa entre 700 e 2800 Hz (duas oitavas) é a mais importante 
para a inteligibilidade.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.7: Densidade espectral do sinal de voz 
 
 
 Após todos esses estudos e constatações, definiu-se que a faixa entre 300 a 3400 Hz 
seria suficiente para transportar o sinal de voz com uma inteligibilidade adequada, que deveria 
ser preservada de ponta a ponta no sistema telefônico, estabelecendo-se assim um padrão de 
qualidade. 
 

Faixa de voz = 300 a 3400 Hz 
 
 
 Mesmo as codificações de voz no formato digital, com aplicação em telefonia, seguem 
essa linha: buscam obter o máximo de compressão, porém preservando o espectro original do 
sinal entre 300 e 3400 Hz. 
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5.8 A música 
 
 A escala musical tal qual existe em um piano atual, surgiu no início 
do século XVII e teve J. S. Bach como seu adepto fervoroso. Bach inclusive 
compôs uma coleção de prelúdios e fugas para teclado, intitulada "Cravo 
Bem Temperado", com o objetivo de demonstrar a versatilidade da então 
nova escala, que permitia transpor o tom de uma passagem musical, em degraus sucessivos, 
mantendo uma relação tal entre as notas que parecia ao ouvido que o conjunto de notas 
mantinha a mesma distância entre si, causando um resultado harmonioso. 
 De fato, o que se fez de ouvido na época, é uma relação logarítmica perfeita. 
 A escala musical possui 12 notas igualmente espaçadas na escala logarítmica de base 2: 
  

      
f(k) = frequência fundamental de uma nota       [5.30] 

     f(k+1) = frequência fundamental da próxima nota  
 
 
 O teclado do piano possui 88 teclas, 
dividas em um pouco mais de sete oitavas (88 = 
7 x 12 + 4), sendo a primeira um Lá de 27,5 Hz 
(A0) e a última um Dó de 4196 Hz (C8).  
 
 A equação 5.30,  que define a formação 
das notas musicais, corresponde a uma relação 
logaritmica entre a freqüência fundamental e a 
próxima nota. Representando as notas musicais 
em função da frequência, vemos claramente 
que a relação á logarítmica 
 
 
 
                                                                                                                                      Fig. 5.8: Teclado do piano 
 
 . 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.9: Escala de notas musicais 
 

A B C D E F G

A# C# D# G#F#

12 notas:
7 brancas
5 pretas

f(k) f(k+12) = 2⋅f(k)

1 oitava

A B C D E F G

A# C# D# G#F#

12 notas:
7 brancas
5 pretas

f(k) f(k+12) = 2⋅f(k)

1 oitava

Notas musicais13,75
1973,75
3933,75
5893,75
7853,75
9813,75

11773,75
13733,75
15693,75
17653,75
19613,75
21573,75
23533,75
25493,75
27453,75

0 20 40 60 80 100 120 140
13,75

1973,75
3933,75
5893,75
7853,75
9813,75

11773,75
13733,75
15693,75
17653,75
19613,75
21573,75
23533,75
25493,75
27453,75
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Passando o eixo vertical da figura 5.9 para a escala logarítmica, obtemos a figura 5.10. 
 
 
 
 
 
 
 
 
 
 

Fig. 5.10: Escala de notas musicais 
 
 
 
 
5.8.1 Experiência 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

5.9 Números de Renard 
 
 O engenheiro francês Charles Renard criou séries de números que 
ficaram conhecidas como números de Renard. 
 As séries são números no intervalo entre 1 e 10, espaçados 
igualmente na escala logarítmica de base 10. 
 Assim, ele criou séries com R = 5, 10, 20 e 40 números.  
 Os números são determinados pela fórmula: 
 
 

[5.31] 
 
 

13,75

165

1980

23760

0 12 24 36 48 60 72 84 96 108 120 132 144
13,75

165

1980

23760

0 12 24 36 48 60 72 84 96 108 120 132 144
N  

Frequência [Hz]

• iPhone 
• Aplicativo piano 

1  Tocar as notas do teclado 
do piano 

2  Observar a extensão das 
frequências 

3  Qual a nota mais baixa que 
se ouve? 

4  e a mais alta? 
 
  
 

https://www.youtube.com/watch?v=4eC6L3_k_48%20%20%20
https://www.youtube.com/watch?v=4eC6L3_k_48%20%20%20
https://www.youtube.com/watch?v=4eC6L3_k_48%20%20%20
https://www.youtube.com/watch?v=4eC6L3_k_48%20%20%20
https://www.youtube.com/watch?v=4eC6L3_k_48%20%20%20
https://www.youtube.com/watch?v=4eC6L3_k_48%20%20%20
https://www.youtube.com/watch?v=4eC6L3_k_48%20%20%20
https://www.youtube.com/watch?v=4eC6L3_k_48%20%20%20
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 Onde "R" é a quantidade de números da série (5, 10, 20 ou 40), "k" é a posição do 
número na série e varia de 1 até "R". O resultado é arredondado para duas casas decimais. 
 Observe a semelhança entre as equações 5.30 e 5.31. 
 Por exemplo, o terceiro número da série de 5 números é: 
 
  
 
 Em áudio, as séries de Renard são adotadas para identificar as frequências dentro da 
faixa de áudio, nos equalizadores. 
 
 
 
 
 
 
 
 

Fig. 5.11: Equalizador Rane ME-60S 
 
 A figura 5.11 mostra o equalizador gráfico da Rane, modelo ME-60S, que utiliza a série 
R10, com valores de frequência que vão de 25 Hz até 20 kHz. 
 A figura 5.12 mostra outro equalizador da Rane, modelo ME-15S, também para dois 
canais, porém com apenas 5 frequências por década (utiliza a série R5). 
 
 
 
 
 

Fig. 5.12: Equalizador Rane ME-15S 
 
 

R5 
1.00               1.60                2.50               4.00                6.30         
 
 

R10 
1.00    1.25    1.60    2.00    2.50    3.15    4.00    5.00    6.30    8.00    
 
 

R20 
1.00      1.25      1.60      2.00      2.50      3.15      4.00      5.00      6.30      8.00    
  1.06      1.32      1.70      2.12      2.65      3.35      4.25      5.30      6.70      8.50 
    1.12      1.40      1.80      2.24      2.80      3.55      4.50      5.60      7.10      9.00 
      1.18      1.50      1.90      2.36      3.00      3.75      4.75      6.00      7.50      9.50 
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5.10 Ruídos de teste 
 
5.10.1 Ruído Branco 
 
 Sinal aleatório cujo nível médio (RMS) é constante e a 
energia é distribuída igualmente em todo o espectro de 
frequência.  
 
 
 
 
 
 
 
 
                                                                                                                                                     Fig. 5.13: Ruído branco 
 
 
5.10.2 Ruído Rosa 
 
 Sinal aleatório cujo nível médio cai 10 dB/década (3 
dB/oitava) e a energia cai logaritmamente (linearmente no 
gráfico logarítmo)  em todo o espectro de frequência. Este 
tipo de ruído tem comportamento semelhante ao ouvido 
humano, em relação à sensibilidade em função da frequência. 
 Normalmente possui um fator de pico (crest factor) de 
12 dB. O ruído rosa definido pela norma IEC possui fator de 
pico igual a 6 dB. 
 
 
                                                                                                                                                     Fig. 5.14: Ruído rosa 
 

 
 

5.11 Impedância nominal do alto-falante 
 
A impedância nominal é normalmente especificada pelos fabricantes como 4 ou 8 ohms. 

A impedância é um parâmetro complexo e varia com a frequência. 
Segundo a norma IEC-60268-5, a impedância de um alto-falante, entre 20 Hz e 20 kHz, 

não deve ser menor que 80%  do valor nominal. Por exemplo um alto-falante cujo fabricante 
afirma que possui 8 Ω, deve ter impedância igual ou superior a 6,4 Ω na faixa de teste. 
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Fig. 5.15: Alto-falante 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.16: Exemplo de curvas de impedância e fase de um sonofletor 
 
 

5.12 Teste do alto-falante 
 
Teste da bateria de 9v 
 

 

5.13 Faixa de frequência dos CDs e DVDs 
 
 Discussão em sala sobre a qualidade do CD versus a do vinyl. 
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5.13.1 Experiência 
 
Vídeo compara a faixa de frequência do CD com a do vinyl. 

 
 Com uma interface de áudio Creative 0202-USB2, que apesar de ser capaz de amostrar o 
áudio em 192 kHz com 24 bits, o autor captura em 120 kHz, 
devido à limitação de seu computador, demonstrando no 
vídeo que o CD corta todo o conteúdo de áudio acima de 22 
kHz, enquanto o LP vai reduzindo  a amplitude suavemente até 
um pouco além dos 60 kHz. 
 Vimos que neste curso que o limite superior da audição 
humana foi convencionado ser 20 kHz. O autor do vídeo 
pergunta que diferença isso faz, já que não ouvimos o que o LP 
oferece a mais. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                   Fig. 5.18a:  LP                                                                                   Fig. 5.18b: CD 
 
 O vídeo reproduz "Rhapsody in Blue", uma composição de George Gershwin de 1924, 
gravada em 1981 pela orquestra "Royal Philharmonic Orchestra". 
 A tela do analisador possui duas marcações: uma em 22 kHz (correspondente à 
amostragem do CD em 44.1 kHz) e em 48 kHz (corresponde a uma amostragem de 96 kHz). 
 Continuar a discussão em sala e colher opiniões. Levantar outros aspectos que podem 
influenciar na preferência entre um e outro: faixa dinâmica, ruído, como foi feita a gravação 
original, etc. Comentar sobre a rotação do disco de vinyl (331/3 e 45 RPM). 
 
 
 
 
 

• Micro + acesso Internet 
• Youtube, 7 minutos 

https://www.youtube.com/wat
ch?v=4eC6L3_k_48    
 

Fig. 5.17: Creative 0202-USB2 

http://en.wikipedia.org/wiki/George_Gershwin
http://en.wikipedia.org/wiki/Royal_Philharmonic_Orchestra
https://www.youtube.com/watch?v=4eC6L3_k_48%20%20%20
https://www.youtube.com/watch?v=4eC6L3_k_48%20%20%20

