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ABSTRACT

Equalizers with fixed frequency filter bands, although successful, have historically had a combined frequency
response that at best only roughly matches the band amplitude settings. This situation is explored in practical terms
with regard to equalization methods, filter band interference, and desirable frequency resolution. Fixed band
equalizers generally use second-order discrete filters. Equalizer band interference can be better understood by
analyzing the complex frequency response of these filters and the characteristics of combining topologies. Response
correction methods may avoid additional audio processing by adjusting the existing filter settings in order to
optimize the response. A method is described which closely approximates a linear band interaction by varying
bandwidth, in order to efficiently correct the response.

been considered as important as magnitude response
because it was less audible.  Still, studies have
confirmed that it is audible in some situations [1,2].
Minimum phase is often chosen for its economy and
because it is appropriate for correcting a system with
minimum phase characteristics, which may be cancelled

1. BACKGROUND

The audio graphic equalizer has evolved into a set of
around thirty filters at fixed frequencies, covering the

audio range. The operator has adjusted the level of each
individually, either to correct a magnitude response
variation, or to create one intentionally. This degree of
control has remained popular despite the recent
advances of technology. Digita Signa Processing
(DSP) has made it practical to provide many times this
resolution, to the point where the term arbitrary
magnitude response is considered applicable.

As is well known, equalization has phase shift as a
mathematical requirement. Phase shift has not always

by minimum phase filtering without adding time delay
[3]. Minimum phase filters might also be appropriate
for magnitude correction of system responses with
unknown phase characterigtics. Today, mainly due to
DSP, non-minimum phase shift designs have become
more practical, and linear phase with its constant group
delay is the most common example.

The graphic equalizer with front panel dliders
displaying a response curve may be easly
misunderstood as displaying the actual magnitude
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response. Although discrete filters can be designed with
narrow bandwidths, even approaching a filter shape
with a flat top and steep cutoff is expensive, so in
practice each filter has an effect over a wider range of
frequencies than it is intended to affect. The filter
response curves sill have significant magnitude at
neighboring filter band frequencies. In practice, each

filter significantly affects no more than the first few
neighboring frequency bands. Figure 1 shows the
combined response for several topologies. The resulting
frequency response then doesn't match the settings (at
band center frequencies). The nature of the combined
response depends on the filter combining topology.
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Figure 1: Combined Responses — Settings a +6 dB

Using discrete filters, techniques can be applied to
counteract this filter skirt interaction, and produce what
is termed “true response”, that is, the frequency
response closely matches the controls. Each band
becomes independent, or very nearly so. Otherwise, to
be effective, an operator must be very accustomed to the
product’s particular filter and combining behavior.

Equalizer filters began as analog second-order
filters, and have since been implemented as digital IR
filters. Equalization curves with complex shapes can
also be accomplished with single large FIR filters,
allowing multiple frequency band settings to be

combined into one filter. The number of bands is
limited only by the size of the filter. An FIR filter may
be designed to approximate the impulse response of
many IR filters, and provides the ultimate in flexibility,
where magnitude and phase may be adjusted more
specifically and semi-independently. In order to support
low frequencies, many thousands of tapsarerequired. In
order to economically implement this, complicated
methods like multirate processing or the use of FFT for
fast circular convolution are used. These methods are
outside the scope of this paper with some examples in
[5,6,7,8].
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Banks of IIR filters have some advantages over
single FIR filters, namely simplicity and speed of
design, and better efficiency for a limited number of
bands that include low design frequencies [4]. Analog
filters are designed once, while a digital filter may need
to be redesigned when any parameter changes. Small
IR filters can be adjusted (redesigned) quickly,
compared to large FIR filters.

Equalizers are usudly adjusted manualy, but in
theory an automated analysis of the sound system may
be used. Care then must be taken with correcting
nonminimum phase responses, where matching the
phase requires added delay. Also, equalization of deep
notches in the response should not be attempted because
of potential adverse effects in other areas of a room, as
well as the possibility of amplifier overload. These
techniques are also beyond the scope of this paper.

2. DISCRETE FILTERS AND REQUIRED
FREQUENCY RESOLUTION

Because of the sheer quantity of filters, using
discrete filters generally limits the practical frequency
resolution to onethird octave. How much of a
limitation this is is debatable, and the one-third octave
equalizer iswidely recognized as effective, familiar, and
easy to use.

A discretefilter equalizer isthe most practica choice
for analog designs, given the difficulty of making
transversal (FIR) analog filters. Second order discrete
filters have been universally used, and their digita
versions are designed using equations that can be fairly
simple (or sophisticated) [9-14]. These equaizers have
proven to be cost-effective, popular, and effective. Note
that thirty bands at one-third octave spacing have an
effect over roughly ten octaves, covering the widely
accepted 20 Hz to 20 kHz range.

The ideal equalizer would have unlimited frequency
resolution, but what is really useful? Human hearing
has limited resolution, with a physica component
defined by the critical bands, and a psychophysical pitch
resolution that’s around 25 times better [15,16]. The
critical bands are around one-sixth octave wide above 1
kHz, increasing beyond one-third octave below this.
Their exact characteristics may be a matter of debate.
They are not at fixed frequencies but are a physical
ability to resolve a combination of frequencies. In the

presence of a complex musical signal, critical bands
limit our ability to hear narrow response variations,
because of masking caused by closely spaced frequency
components. Signals with fewer spectral components
enable perception of much narrower response
variations.

Even assuming unlimited perceptua abilities, there
are other practical limitations. A typical room is not
anechoic, and has more than one listener position, so it
has a response that can't be perfectly flattened. The
frequency and phase response vary with listener
position because of room reflections and off-axis
speaker response variations. The most that can be done
is to flatten the speaker/crossover and make some
compromise for the room reflections[17,18]. Of course
a good sound system won't have too many severe
narrow variations.

It appears that one-sixth octave resolution matches
the minimum size of the critical bands and should work
very well, particularly if the center frequencies could be
adjusted more finely. One-third octave matches low
frequency critical bands, and should be sufficient at
higher frequencies, particularly if a parametric equalizer
is available to tackle areas requiring better resolution.
The ideal equalizer might have 25 times the resolution
to match our psychophysical resolution, but at greater
expense and with margina improvement for a good
sound system.

3. FILTER RESPONSE AND BAND
INTERACTIONS

The discrete equalizer filters are probably always
based on second-order bandpass filters. Higher order
filters have been shown to have so much phase shift that
they are impractical for use in equalizers [19]. An
examination of the analog second-order bandpass filter
helps in understanding the equalizer characteristics,
whether it is implemented as an analog circuit or in
DSP. This filter has a magnitude response that can be
quite sharp a its peak, but which asymptoticaly
approaches a 6.02 dB per octave slope farther away, as
shown in Figure 2, along with the phase response. This
gives it the potentia for significant effect over a wide
frequency range. Its phase response is zero degrees at
center, and approaches 90 degrees a low fregquencies
and —90 degrees at high frequencies. Its Nyquist plot
traces a circular path in the complex plane as shown in
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Figure 2: Bandpass Magnitude with the 6 dB/octave Asymptotes and Phase Below

Figure 3, with some analysis of thisin Appendix |. The
magnitude and phase are given by the length and angle
of the vector from the origin to a point on the path.

In equalizer designs the bandpass may be summed

proportionally with unity gain:

2+,

S
G(s)=1+(k-1)B(s)= —Q, B(s)= _Q k—qqee 1)

2

S +E+1
Q

where K is the desired peak gain and B(s) has agiven Q
(without loss of generality, the design frequency is one
here). The result has unity gain except near the filter
center frequency, where the gain increases to k, and is

s
s*+ - +1

commonly called a presence or bell filter, with resulting
magnitude and phase shown in Figure 4, with Nyquist
plot in Figure 3. The symmetry on the frequency axis of
the bandpass is maintained.
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Figure 4: Presence Magnitude and Phase
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A cut filter can be designed by using subtraction:

s? +iQS'+1

S
N(s):1—[1—%j QS
s+ +1

1
The minimum level is E however thiswill result in

a somewhat narrower response width compared to the
boost configuration as shown in Figure 5. For a
symmetrical cut you simply use the reciprocal transfer
function:

1

1+ (k-1)B(s) ®)

Figure 5: Boost and Symmetrical and Subtracted
Cut

For the single filter case it turns out that subtraction

Q

with Q'=?also yields a symmetrica cut (see
Appendix I1).

It is well known that any stable minimum phase
transfer function can be inverted to yield another stable
and minimum phase function. Whether the design is
digital or analog, the condition for minimum phase
zeros matches the condition for stable poles. Inversion
is simply the reciprocal of the transfer function, and

2)
sz+3,+1

zeros and poles exchange places. This can be done in
the analog domain by using feedback, or in the digita
domain by swapping the filter coefficients and re-
scaling. So as long as a filter is minimum phaseg, its
symmetrical counterpart is given by the reciprocal
transfer function.

Analog equalizers and their digital counterparts are
generally based on minimum phase filters. It's been
shown that the various popular ways of combining
multiple second order filters preserve the minimum
phase property [21].

The boost and subtracted-cut presence filters have
bandwidths which are obvioudly different, although they
incorporate a bandpass with unchanging Q. A
clarification of the definition of bandwidth is in order
since many definitions are possible. For a bandpass
filter, the bandwidth is specified by convention as the
difference in frequencies that result in —3 dB magnitude
response. Once this filter is combined in different ways
with unity gain, the door is opened to specify bandwidth
in different ways, such as the bandwidth of the
underlying bandpass, the frequencies where the
deviation from flat is +/-3 dB, or as points midway
between 0 dB and the peak or valley (notice that if a
peak isless than 3 dB, there are no -3 dB points). While
these are all legitimate, one can alter the Q to achieve
any of these bandwidths. Digital filters have
progressively more warping near the Nyquist frequency,
but can adjusted to compensate for this, either by
modifying the Q or by a more sophisticated method
[10,22]. For simplicity one can define the bandwidth as
the bandwidth of the underlying filter, and then the
presence filter bandwidth, referenced to the filter
peak/valley, will approach the bandpass specification as
the amount of boost/cut is increased.

Studying the presence filter magnitude response
curve for different settings, one can see that while the
center of the curve is naturally at the level of the setting,
magnitude response at any distance from center is not a
linear function of the setting. Figure 6 shows a family of
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response curves, and Figure 7 shows the magnitude
response at nearby frequencies spaced one-third octave

apart versus band setting. This magnitude function can
be seen to be somewhat nonlinear:

2 — —
1_((0) n Ko’ 0 G
> O _C | K
@, w, Q? 0, o Q?
20l0g|H (w) =10log| = = =10log @)
o) P 0 o, 1
1-|—1| | +— Pl By
, a, Q2 L @, @ Q |
; 1 E ¢| ; D
0—4 3 -2 'Il IO I]. 2 3 ?

One-Third Octaves

Figures6 and 7: Presence Filter Response Skirt Nonlinearity at One-Third Octave from Band Center

Going from one band to thirty complicates the
picture. One approach is to form a set of presence
filters and cascade them. The complex responses
multiply, so the total log magnitude and phase shift are

Hl(w> =M 1(w)ej¢1(w) H 2(6‘)) =M, (w)ej¢2(w)

H (@)= H,(0)H (@) = M (@) —

log M (@) = log[M, (@)] + log[M , (@)}, () = ¢, () + 6, ()

Another is the parallel topology: to proportionally
sum the bandpass outputs before summing with unity
gain. In pardlel, the result is the complex sum of the
individual responses. The phase shift of the filters has

simply the sum of the individua presence filter
magnitudes and phase shifts. For two filters and agiven
signal frequency:

(5)

(6)

the effect of cancelling much of the interband
interference, while also increasing the response ripple a
little (compared to cascaded filters) for a series of bands
set to a nonzero level [19]. The only cancellation in the
cascaded filters is within each filter, as the bandpass is
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summed with unity. Figure 1 shows composite
responses for paralel, cascaded, and interpolated
constant-Q (a combination of parallel and cascade).

Discrete filter fixed frequency equalizers fall into
two categories, proportional-Q and constant-Q, which
refer to the Q of the underlying bandpass filter. A
proportional-Q equalizer has filters and band level
controls tightly coupled together such that adjusting a
control changes the filter Q. The Q can increase
dragtically with setting, yielding very broad response for
small settings and sharp response for large ones.
Although popular and effective, this is not at all
predictable for the inexperienced user, being far from
the settings in general. In the interest of true response,
this paper focuses on equalizers with Q that doesn’t
vary radically.

Pioneering constant-Q equalizers represented a huge
advance in the quest for a response that matched the
settings [19]. The frequency resolution with moderate
settings was enormously improved, and the combined
response of adjacent bands, while it exceeded the
settings, was much more accurate than proportional-Q
designs. Paralel and cascade topologies have been
combined to yield combined responses with relative
flatness and accuracy. Parallel combination of alternate
bands, then cascaded, is used to provide interpolated
constant-Q equalization, where adjacent bands can be
adjusted so that the response peak is moved between
band centers[22].

While analog designs use multiple feedback loops,
digital implementations have an additiona constraint:
that they can have no delay-free feedback loops.
Otherwise a sample calculation could never complete.
This prevents a digital bandpass filter with a delay-free
path from simply being placed in a feedback loop, asis
done in the analog domain for symmetrical cut.
Equivalent transfer functions may be found in theory,
and quite easily for single filters. Individua presence
cut filters can be used with the cascaded topology, as
long as thefilters are very low-noise.

4, CORRECTION METHODS

One way to deal with interband interference is to
remove it as needed using additiona filters. This has

been shown to be quite effective, athough it requires
more processing power [24].

One can also adjust the exigting filters to yield the
desired response, which is what one naturaly does in
practice. This can be automated and works well, but has
limitations. To start with, it is difficult to make the
response maximum at one band and minimum at the
next. The width of the filter skirts require one to
compensate drastically, and the required filter settings
can become huge, as shown in Figure 8. In fact, for
cascaded filters and a given fixed Q, if one attempts to
adjust two adjacent filters to yield a given dB response
(+N, -N) at band centers, there is a limit to the value of
N, because the required settings become arbitrarily large
(see Figure 9, Appendix II1). This problem becomes
more acute as the filter Q is decreased. Figure 10 shows
how the inter-band ripple in the response increases as
thefilter Q isincreased.

It seems that it would help to vary both the
amplitude and bandwidth, and possibly also the center
frequency, making the Q higher where it's needed for
sharp transitions while keeping it lower otherwise to
reduce ripple. But in genera this is a substantial
nonlinear optimization problem, and doesn't readily
lend itself to real-time solution.

Various algorithms can be applied to these
optimization problems [23]. There are simple
algorithms such as steepest descent, and more
sophigticated agorithms with faster convergence. A
human being might simply look at the difference
between the composite response and the settings, and
iteratively adjust the settings by maybe half the error.
This descent technique was applied automatically some
time ago [25], and works well.

In general, optimization methods can perform the
best, and can produce true response with any equalizer
topology, given effective methods and high
performance hardware. Otherwise they will perform
dowly and with some caveats. It's possible for a
method to converge unpredictably slowly, or to
converge on a local minimum, and in that case the
results may be unpredictable. The error criterion won’t
necessarily be appropriate for audio, resulting for
examplein asmall
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Figure 8: Abrupt Transitions Require Large Adjacent Band Settings
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Figure 10: Inter-band Ripple Increases with Filter Q of 2,3,4, and 5.

error over alarge frequency range, instead of allowing a
moderate error over asmaller range.

Since for cascaded filters the magnitude responses of
the filters sum (in dB), and since the effect of afilter on
nearby frequency response points is nearly linear over a
moderate range, a linear approximation can be used
[26]. A linear approximation can aso be applied to
other topologies. Given a fixed linear system (with an
invertible system matrix) its inverse can be calculated
once and applied to the settings dynamically to produce
the internal filter settings. This results in the desired
response at band centers, and it works well over a
moderate range of settings. Beyond this, nonlinearity
effects become significant.

Since the most interband interference is from the two
adjacent bands, a linear approximation would be more
effective if those response points could be made a linear
function of setting (by symmetry the magnitude a the
left and right adjacent band frequencies are equal). This
linear relationship can be produced by adjusting the
filter Q as a function of setting such that adjacent band

response is a linear function (in dB) of the setting".
Figure 11 shows a family of response curves, and Figure
12 shows the magnitude response a nearby frequencies
spaced one-third octave apart versus band setting
(compare to Figures 6 and 7). A closed form equation
for the function Q(dB) is derived for this in Appendix
V.

It turns out that the response at more distant band
frequencies is made more nearly linear, and is small
enough that the nonlinearity is insignificant. The Q is
highest for larger settings, yielding a magnitude
response with excellent resolution with low ripple. If
desired, the Q may be adjusted to optimize the linearity
at several frequencies, but when this was done by the
author, the result was found to be very close to the
closed form solution. Ironicaly, a mild form of
proportional-Q has been employed to achieve true

response.

! This application of variable Q is covered by a patent
application. Contact Rane Corporation for more details.
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In theory this is fine, but there are remaining issues.
When adjacent bands are set very differently the method
will tend to produce overshoots just beyond band
centers. Also, in this case the resultant filter settings
may become larger than desired. These two issues may
be handled effectively by means of small constraints on

the settings (applied transparently), and this only
dlightly compromises the resolution.

Andog filters have been assumed here for
simplicity, while digital filters may be more appropriate
in practice. In this case, the response warping needs to
be considered for high frequency bands.
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5. CONCLUSIONS

Although better performance is practical, equalizers
designed using discrete filters have provided good
functionality at low cost. Their main drawback has
been the mismatch between settings and actua
response, a situation which has been improved using
creative series and parallel topologies. True response
can be approximated to different degrees by many other
techniques which digital technology has made more
practical. One of these uses cascaded filters and a
particular function which sets the filter Q based on
boost/cut setting, thereby linearizing the response at
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neighboring bands, and allowing an excellent match. pz +1

As technology progresses, large FIR filters or S=

optimization techniques may provide rapid, precision

control a low cost. Whatever the method, true response

is aworthwhile objective. Substituting into a first-order lowpass with given cutoff,
yields the bandpass (8)

,p>0 (7)

6. APPENDIX | - DERIVATION AND
COMPLEX RESPONSE OF THE SECOND
ORDER BANDPASS

The second-order bandpass with@, =1 may be

constructed from the first-order lowpass using the
transformation (7) [20].

1 1 B w,P Q Q:i @)

= > =
1+ > 1+i(p2+1) P +a,p+l p2+£+1 @,
W, @, P Q

The cutoff frequency of the lowpass becomes the Finaly, add the condition that the magnitude
bandwidth of the bandpass. response be 0.5 a @ = @, , which specifies a -3 dB

It may occur to the reader that this second-order bandwidth, and alittie agebra yields

bandpass transfer function might not be unique. If

instead one starts with a general transfer function

which is aratio of polynomials of degree two or less, »

and which has zero gain for both zero and infinite a=w-o ,o>1 (10)
frequency, the denominator must have degree two

and the numerator degree one. Add the requirement

of apeak gain of one, it is easy to show that the form

must be: The bandwidth is geometrically symmetrical about
o, =1, resulting in:

_a ©)
s’ +as+1
S
Q 1Q: 1 y W, = a)l_l (11)
P+ > 41 @~ @
Q

order. The transformation can be evaluated alone
So given the conditions above, this transfer function forp= ja;, w>0:
is unigue and so is the transformation from first-

AES 116th Convention, Berlin, Germany, 2004 May 8-11
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This maps positive @ (p on the positive j axis) back to
sontheentirej axis, but with the characteristic

slw?)=-s(w) (13)
which mapss(l) =0, w>1to the positive j axis,
andO < w <1to the negative j axis. Plotted on a
logarithmic frequency scale, S(a)) is antisymmetric with

respecttow =1.

The complex response of the first-order lowpass can
be further analyzed, both for its direct use with positive
freqguency, and for bandpass use which includes
negative s. The lowpass may be split into constant and
allpass portions:

1 1 1-s
—=—|1+—, where the allpass
1+s 2 1+s
portionlLS has a complex response that traces
1+s|e,

the unit circle, and can be shown to have phase
shiftd = -2tan™" w.

For positive frequency, the lowpass transfer function
has a complex response that traces a semicircle with
negative imaginary part. The bandpass transformation
maps positive frequency onto the entire imaginary axis,
and the complex response of the bandpass traces an
entire circle (the point —1 needs specia care).

A presence filter scales this path and shifts it right by
one, as shown in Figure 3.

(12)

7. APPENDIX II - EQUIVALENCE OF
SYMMETRICAL NOTCH AND
SUBTRACTED NOTCH WITH MODIFIED Q

A presence filter is designed using proportional amounts
of a bandpass summed with unity gain. For simplicity,
the design angular frequency is one. The bandpassis:

S
B(s)= QS (14)
s+ +1
The resulting transfer function G is given by:
G(s)=1+(k-1)B(s)
2+, 1
— Q ’ k — 100.05dB (15)

S
s+ +1
A symmetrical cut hasthereciprocal transfer function:

P+ >4
H(s)= (16)

2+ 55,1

Both the symmetrical cut and subtracted notch filters
will require a minimum gain at the design frequency,
and for equal but opposite dB values the required gain is
(1/K). The Q for the subtracted notch case won't be
assumed to be the same as before:

AES 116th Convention, Berlin, Germany, 2004 May 8-11
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. > Q= % (18)
N(s)= 1_(1__jL
K)g24 S 11
Q 8.  APPENDIX IIl - MAXIMUM ALTERNATE
17) BOOST/CUT ON ADJACENT BANDS
24 13, 41 ACKNOWLEDGEMENTS

kQ
-, s The transfer function and squared magnitude of a
T+ +1 bandpass filter proportionally summed with unity
(presencefilter) are given by

Finally, comparing (16) and (17), one can see that they
areequad if the Q is given by (18).

2
o [a)j +—ka+1
H(w)=1+(k-1)— 2% _ ‘%) & (19)
_[a)J +J70)+1 _(wj +Jl+1
a)O a)O a)O a)O
I [a)JZ_Z k?w?
-1 — e
2 wO a)o Q
H(w)" == - (20)

Now for H,, H , having center frequencies @, , @, , and with H,, H , set to boost and cut respectively, in equal

amounts, theresult is (21):

AES 116th Convention, Berlin, Germany, 2004 May 8-11
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- 2 . 2 _
® k2w? ® °
2 a)o a)o Q aa)o a a)o Q
Hy(@)H, (@) =| =" : -
® * 1) k*w®
@, @,"Q o, a w, Q
_ o _ - N _ - (21)
o) ° w Y i °
k™ 1—[J +— 1—[j e
a)o i a)o Q Om)o a a)o Q
- 27? 2 27? 2
0] 0] 0] 0]
- = |+, K| |+ s,
@, @, Q o, a0, Q
The taking the limit as k approaches infinity, the
squared-magnitude is:
2 2
1) °
1= — e e
2 o, o w,Q
M () =limH, (0)H, (o) =« (22)
Kk—oo 2 2
0] 0]
-1 |+ 2
a)o a)o Q

The maximum possible magnitude at @, is given
by M (a)O ), which reducesto:

M(a,)=Q*(a—a) +1

(o]

(23)

A one-third octave

1

has o = 23, s0then M (@, ) = 0.21736Q% +1

equalizer

This being the magnitude sgquared, the maximum in dB
for aQ of 4 isonly about 6.51 dB. Although the peak of
the magnitude curve lies just to the side of the band
center, it is only dlightly larger. By symmetry, the
magnitude at the other band center is equal but with
opposite sign.

9. APPENDIX IV - CLOSED FORM

SOLUTION FOR Q(K)

Given a presence filter, the filter Q can be adjusted as a
function of setting, Q(k), such that the magnitude
response in decibels at a preselected frequency varies
linearly with the setting in decibels.

The frequency @, can be considered the ratio of the

preselected frequency to the filter design frequency, and
the complex response function H is given by:
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T
H(w, k) =1+ (k-1 QK = Q (24)
2, o, 2, Joy
-0+ ~+1 1-w + =
Q(k) Q(k)
of -] + k7007 (k,)
The linear dB constraint with proportionality constant C 2 2~-2
can be written: C=05 (1 “ ) o Q7(k,) (29)

20l0g,,|H (@, k) = 20Clog,, k

. (25)
= 20log,, (k™)
Taking the squared magnitude yields (26):

ok = L] K’
1 (1_ o )2 +@,"Q (k)

(26)

Combining (25) and (26) resultsin:

(1_ a)lz )2 + kzwle_z(k) — k% 27)
(-o°f +0°Q (k)

Solving for the function Q yields:

k2 _ kZC

k* -1

!

Qk)= o, >1 (28)

2
o -1

The constant C is still undetermined, but is found by
taking the log of both sides of (27), and choosing a

particular value of k, and Q(k, ):

logk,

Any reasonable values can be used for k, and Q(k ),
but K, should near the midrange of normal filter band
boost adjustment. Larger Q(ko) will increase response

ripple and lower Q(K,) will increase the amount of
correction required by this method.
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