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WHY DSP BOXES SET THE SAME WAY DIFFER

Introduction

A common pro audio problem is that if you input the
same settings into different manufacturer’s program-
mable parametric equalizer sections on processor
boxes or control programs, they produce different
results; some more so than others. This makes compar-
ing DSP platforms difficult.

The explanation is simple: manufacturers use differ-
ent definitions of filter bandwidth. Understanding this
is not as simple, as explained here.

The proliferation of loudspeaker processing units
demonstrates that the differing definitions of band-
width gets thorny when one manufacturer develops
filters for use in a DSP box made by another manu-
facturer, and the end user is attempting to implement
them in a DSP unit made by a third manufacturer.
Frustration ensues.

It is important to note this isn’t a digital problem or a
DSP problem. It is a definition problem. Indeed, analog
parametric equalizers are just as prone to head-to-head
comparisons as DSP units, and for the same reasons.
For an experiment, make matching settings on different
analog parametric EQs and run a response curve for
each. Comparing them may surprise you.

The same is true for digital processors. Correspond-
ing amplitude and frequency settings will track closely;
it is the bandwidth settings where things get sticky.
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Bell Filter (“Bandwidth”) Definitions

A significant inconvenience in the audio industry today
is that filter bandwidth is defined in several different
ways. You cannot expect two pieces of equipment set
the same way to have the same frequency response.

Filter bandwidth is not even set the same way: it may
be set in octaves or Q.

It is not even widely known what to expect in a
particular case. There is an incentive to become famil-
iar with one device or manufacturer and avoid change,
even when it would be good for other reasons. It’s not
always even possible to get two equalizers to have the
same frequency response, but you can usually get close.

Many parametric equalizers use cascaded second-
order bandpass filters!, which makes their responses
add in dB — then each band can be treated indepen-
dently. Given a way to convert one type of bandwidth
to another, different equalizers of this general type can
be set so that the responses match, limited only by the
resolution of the bandwidth control.

The pro audio industry needs to promote under-
standing of the issues and to determine what each
manufacturer is doing. Also, it is reasonably easy to test
equalizers to determine what the bandwidth definition
is, and that will be covered here.

Only a handful of definitions are in use and once
these are well known, it becomes possible to use equip-
ment with differing definitions, and ultimately the
matching process could be automated.

1Second-order bandpass filters are those described by a
transfer function having quadratic equations in the numera-
tor and denominator. A quadratic equation is one in which
the first term is squared, having the general form ax®+ bx + ¢
=0, where a, b, and c are constants.
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Isn’t There One Definition of Bandwidth?
As long as bandwidth refers to just a frequency range,
there is essentially one definition, although it has
several forms. The standard ones are hertz, Q, and
octaves, and well-known formulas exist to convert one
to another. Octaves and Q have the advantage of being
independent of the filter center frequency. Here are
some definitions:

(Frequency Span in Hz) = (High Frequency) — (Low Frequency)
Q = (Center Frequency) / (Frequency Span in Hz)

20ctves — (High Frequency) / (Low Frequency)

Multiple definitions come into play when the end-
points of the frequency range refer to a particular level
on a filter magnitude response curve, such as “3 dB
down,” and result largely from the possible choices for
this level.

Historically, bandwidth was defined for a bandpass
filter, and referred to the difference between the fre-
quencies where the passband dropped to —3 dB (see
Figure 1).
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Figure 1. Most common bandwidth definition.

As shown in Figure 1, the bandpass has a 2 octave
bandwidth, and the Q is 1/ (2-0.5) = 2/3. If the center
frequency were 1000 Hz, the bandwidth would be 2000
Hz — 500 Hz = 1500 Hz.

Choosing a level other than —3 dB changes the
definition of bandwidth for a given filter response,
and therefore changes the filter response for a given
bandwidth setting. The Linkwitz-Riley crossover is one
example of a filter where the —3 dB point is not used;
the —6 dB point is used instead.



Overview of the Bell Filter Situation
What we see and refer to as “bandwidth” in paramet-
ric equalizers is called a “Bell filter” due to its shape.
Strictly speaking, it is not a true bandpass filter in an
engineering sense, although it is made from one.

A second-order Bell filter, which is one of a cascaded
set of filters, is equivalent to a second-order bandpass
filter (with a given Q) summed back with the original
signal as shown in Figure 2.
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Figure 2. Creating a Bell curve from a bandpass filter.

However, the Bell curve always has a larger band-
width than its corresponding bandpass filter, taken at
any appropriate reference gain, such as -3 dB from
peak. Figure 3 shows a Bell filter response superim-
posed on the bandpass from which it can be construct-
ed. Notice the widening of the Bell response. Techni-
cally, the bandpass in this construction has been shifted
up 6 dB for the purpose of comparison.
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Figure 3. Comparison between Bell and bandpass curves.

One definition currently in use simply sets the
bandpass from the filter bandwidth setting (referred
to here as Bandpass Q). Or you can compensate by
using a smaller (fixed) bandwidth, which narrows the
Bell so the bandwidth is correct for one setting. This

effective technique has been used historically in analog
constant-Q equalizers, and the result is very nearly
constant compared to proportional-Q equalizers.

The use of microprocessors and DSP have made oth-
er approaches more practical, where filter bandwidth
is automatically adjusted in various ways to achieve
particular filter gains at the frequencies corresponding
to the bandwidth.

What are the Other Definitions?

The other definitions will be described here using the
term Filter Gain, to mean the gain for the Bell filter at
either frequency at the endpoints of the bandwidth.
Instead of considering the bandpass response, a rea-
sonable definition is to make the (Bell) Filter Gain —3
dB from the peak. But if, for example, a filter response
only ranges from 0 dB to +2 dB, it’s impossible to use a
—3 dB response point. The Bell filter has this dilemma
for small settings. This is remedied by choosing the
filter gain to be one-half of the peak (setting) dB for set-
tings under 6 dB. At 6 dB, these two definitions agree,
and this will be referred to as the 3 dB Hybrid method
here. Figure 4 is a graph of the Bell filter curves. Note
that the 3 dB Hybrid method (dotted) is 3 dB down at
the bandwidth (solid horizontal lines), for settings 6 dB
or higher.
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Figure 4. Bandpass Q definition vs. hybrid (3 dB and dB/2).

Another definition sets the bandwidth such that
filter gain is one-half of the peak always, which is a con-
sistent definition that results in a comparatively nar-
rower response curve for large settings. It will be called
the dB/2 method.

The particular definition is sometimes chosen to be
different when the Bell filter is attenuating (cutting)
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rather than providing gain (boosting). Many manufac-
turers treat the two the same way, yielding a symmetri-
cal response between boost and cut, but others set the
bandwidth smaller for cutting filters, such as by forcing
the Filter Gain to be —3 dB from unity gain. For low
bandwidth settings, this results in a notch filter.

What are Particular Manufacturers Doing?
The author knows Rane uses Bandpass-Q (so far),

has information from EAW, and has tested products
from QSC, dbx, Biamp, and Shure. There is also some
information about XTA, Ashley, Symetrix and BSS, but
not verified at this time. It is quite possible that a given
manufacturer has not always applied the same defini-
tion. Figures 5 and 6 compare some definitions, the
first showing the filter gain (in absolute dB, at the band-
width edge frequencies) versus setting (mentally turn
it over and it looks more familiar). The second shows
the Q of a bandpass that could construct the filter (set
to a Q of one, or equivalent setting of 1.3885 octaves),
versus filter gain setting.
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Figure 5. Filter gain versus setting for various manufacturers.
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Figure 6. Q versus gain setting for results shown in Figure 5.
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The dB response graph reveals definitions based on
dB response versus setting: Biamp, with dB/2, and the 3
dB Hybrid: EAW and others, including possibly Syme-
trix and BSS. Although it’s not obvious, the unusual
dBx adaptive-Q seems to be based on dB response, and
may be characterized by the following equation for
response dB at bandwidth endpoints versus setting dB:

y = —0.0006874x> + 0.0005066x* + 0.841x

At a setting of 12 dB, this is approximately 3 dB
down. dbx refers to this response as emulating mixing
console EQ.

The bandpass Q graph reveals the constant band-
pass Q definition of Rane, QSC, Shure, and dbx
(constant-Q).

Other Aspects

Individual filters can be combined in different ways,
such as cascaded or parallel, and while this has little
or no impact on the response of a single filter, two or
more filters are a different story. Only cascaded filters
are considered here, and this characteristic can easily
be tested.

So far, the issues apply both to analog and digital
filters, but digital filter response becomes more asym-
metrical as frequencies affected by the filter approach
the Nyquist limit (24 kHz for 48 k sample rate), compli-
cating the bandwidth issue. This effect can be tolerated
(ignored), or it can be countered in different ways. Usu-
ally the gain drops to unity at the Nyquist, but there is a
difficult method for designing digital bell filters that are
much more symmetrical, and they don’t drop to unity
gain at the Nyquist. Even so, all DSP products must
apply a filter below the Nyquist, and so typically there
is a sharp cutoff with linear (or near-linear) phase at 23
kHz, “chopping oft” the filter response abruptly.

A related issue is how the frequency response is
shown in software. The author has found that the digi-
tal effects just mentioned are not shown by all manu-
facturers, so might either be corrected or ignored.

The Biamp Audia appears to be correcting the actual
response.



Equipment Testing
Testing is quite simple but involves a bit of mathemat-
ics to understand the results.

Connect the equipment to a signal generator and de-
tector (e.g., Audio Precision or equivalent), and be sure
that the only processing is from the parametric filter(s)
being adjusted (no crossover, compressor, etc). Check
for interaction between filters, by setting two filters
(call them A and B) so that they both affect a frequency,
and measure with just A, just B, and both. The result
for both should be the sum of the readings for A and
for B. In that case, testing one filter is sufficient, and
otherwise the situation becomes more complicated,
and is not covered here.

To test a single filter, set it at a frequency well below
the Nyquist, such as 1 kHz, measure at one frequency
chosen as one that will vary significantly, and record
the level for a collection of settings. A good choice is a
generator frequency of 707 Hz with the filter set to 1.0
octave, as that will immediately reveal a dB response
filter type, such as dB/2. Be careful that readings aren’t
affected by clipping or noise. A collection of -12, -11 ...
-1,0,1... 11, 12 should be more than sufficient. You can
use intervals of two or three dB, but it can help in some
cases to have extra data. One bandwidth setting should
also be sufficient. Additional measurements can be
taken, such as for several bandwidth settings. Measure-
ment at the 0 dB setting is included only as a check of
equipment gain.

From these numbers, you can tell if the definitions
agree for boost and cut, and if they don’t, consider
boost and cut as separate cases. If the numbers are
nearly equal, the difference can be due to measurement
error.

Using the octaves or Q setting, you can determine
either bandwidth end frequency. The generator/mea-
surement frequency should be chosen to be close to
one of these in order to minimize the effect of mea-
surement error. Below are formulas for the finding the
lower frequency and for converting between octaves

and Q.
f:i J1+4Q° —1]
2Q
ZOcmveS/Z
Q = Octaves
2 -1
1 1
Octaves = log|0.5(—+ |— +4
log2 Q \Q

If the measurement frequency is chosen to be either
endpoint of the bandwidth (such as 707 Hz for a 1 kHz,
1.0 octave filter), it may immediately reveal a pattern
such as 3 dB from setting, or (dB/2). If so, you are done.
If no such pattern is revealed, the next step is to deter-
mine the bandpass Q at each setting from the follow-
ing formula. Use the readings ‘M’ from each setting
‘g’ If a reading M is larger than the setting ‘¢’ because
of a measurement error, it must not be used in this
equation. Also, settings and readings in dB need to be
converted by g, M = 10°%8

M?* -1
S _Sfe
fo  f ,

where g is the setting, fis the generator frequency, f, is
the center frequency, and M is the measurement. This
works for any frequency;, f, different than fC , and its deri-
vation is given later, where:

AR
QBell fc f

If the bandpass Q is found to be nearly constant, the
equipment is using the bandpass Q definition. The Q
error needs to be attributable to measurement error.

The author has investigated the error sensitivity.
Assume that the measurement error is 0.01 dB. If a
bandwidth end frequency is used, the Q is 1.4, and the
absolute value of the setting is at least 4 dB, the Q error
will be below 0.01. Settings from 1 dB to 3 dB can result
in errors up to 0.03. Error increases with increasing Q.
Choosing other reasonable measurement frequencies
increases the error slightly.

Whether the bandpass Q is constant or not, the en-
tire filter response can be calculated from the bandpass

QBP =

Q. No matter what your measurement frequency, you
can now calculate the response at either bandwidth end
frequency using the following formula:

2 10 O.IdBSgt 2
dB,,, =10log [QB"” . :’ R
Qpen + Qpp
Where Q

. 18 defined above. This can immediately
reveal a pattern mentioned earlier, such as -3 dB.

Some definitions won't be clear from testing, but can
be characterized anyway using a table or curve fit for
dB or bandpass Q as a function of setting, as was done
above for dbx (adaptive-Q).
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Mathematical Analysis
Here lies the complete mathematical analysis of the
above results and becomes quite involved. It is provid-
ed for DSP designers and the mathematically curious.

When the filter has a peak greater than unity gain
(boost), it is equivalent to a scaled bandpass plus one
(see Figure 1). The case where the peak is less than
unity gain (cut) has a transfer function that is the re-
ciprocal of the first case. This is equivalent to both the
filter’s dB setting and magnitude response in dB having
a sign reversal. Therefore, results for the boost case ap-
ply to the cut case.

All filters are assumed to be designed for an angular
(or radian) frequency, w, of one; other design frequen-
cies require a substitution into these equations of:

Y
2nf,  f.

The (analog) Bell filter has the following transfer
function, constructed from a bandpass:

s2 485 1

1+(g-1) s =
s2 4241

s
P+ —+1

Notice that Q here is that of a bandpass filter. Evalu-
ating at s = jw and taking the squared-magnitude yields:

(1—w2)2+ﬁ L 2+ g

MQ(a) Q g)_ QBP2 @ QBP2
» <Bp» - )

(1—w2)2+ = 2 w—l + 12

BP w QBP

Bandpass Q is a measure of frequency span where at
either frequency at the ends of the span, the bandpass
magnitude response is down 3 dB, easily shown to be
given by this function of the end frequencies (if the
angular design frequency is one):

QBP =

We can define another type of Q; call it (O which
is a function of a frequency where we consider the
magnitude response of the Bell filter curve (possibly a
bandwidth end frequency):

-1
Qg (@) = “*) -—w 1‘

Then substituting into the squared-magnitude re-
sponse results in:

-1 -1
wa _wb| ’wb :wu

1 g’
J— +
2 Q;ell (@) Q;p Qgeﬂ (w)g ®+ Q;P
M yLppr ) = = 5 5
@ Q-2 ; + 1 Qg @)+ Qpp
Q;ell (@) Qép
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Given a setting g and a desired or measured mag-
nitude M which may be for instance 0.7071*g for 3 dB
down from the peak, we can solve for the bandpass Q
needed to achieve a desired Bell Q.

2 _M2
Qpp (@, 8, M) =Qyy (w)ﬂg]\/ﬁ—_l’ M<g

Q,,, may be defined to be a specific bandwidth
where the Bell magnitude is controlled, or can be a
function of an arbitrary measurement frequency. It is
important to remember the value of M depends on the
particular meaning of Q, .

We can of course solve for Q, ,, given a Bandpass Q,
which may be a function of g:

M’ -1
QBell(g’M) = QBP(g) gz _M2
Given a definition where M is some complicated
function of g, M = M(g), the general formulas can be

applied. Here are some simplifications.
dB/2

M = /g ; after simplifying, Q,, = QBell\/E
3 dB Down

M = g/\/i; after simplifying, Q,, = Qy,, ,g>\/§

_ 8
Vg?-2
3 dB (up)

M = \/E; after simplifying, Q= Q,.,\/g*~ 2,4 > V2

Given the bandpass Q, the response at any frequency is
found using the equation for M? converting from/to dB.

Summary

Bandwidth definitions can be determined for many
parametric equalizers, making it practical to transfer
settings between devices with different definitions. This
is limited only by control resolution. There are only a
handful of definitions, so sometimes conversion won't
be required. Testing to determine the definition is not
difficult, and can support claims by manufacturers.

Conversion Calculator

Rane has created an Excel conversion calculator for
inputting parameters into Rane DSP processors from
EAW settings. Other manufacturers may be available in
the future. The calculator is available to download from
our website at the page of this RaneNote, and also from
the Library page.
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